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In this paper we study both the theoretical problem of the existence and the practical problem of
the approximate calculation of eigenvalues and eigenvectors of (i) Tu—ASu = 0, where T and §
are some linear (in general unbounded and nonhermitian) operators in a Hilbert space. After a
short discussion of a class of K-symmetric operators, in section 2 the author proves the existence of
eigenvalues and eigenvectors of (i) under various conditions on 7 and § and investigates conditions
under which the set of eigenvectors of (i) is complete. Section 3 indicates briefly the applicability
and the unifying property of the generalized method of moments to the approximate solution of (i).
Section 4 presents and thoroughly studies a very general new iterative method for the approximate
solution of (i). The advantage of this method is that it does not require the practically inconvenient
preliminary reduction of (i) to an equivalent problem with bounded operators and that under
certain rather general conditions the convergence is monotonic. Furthermore, by specializing
operators and parameters, our iterative method contains as a special case, almost every known
iterative method for the calculation of eigenvalues (mostly proved previously only for symmetric
matrices and bounded operators). Finally the applicability and the numerical effectiveness of the
iterative method is illustrated by calculating the smallest eigenvalue for a selfadjoint and non-
selfadjoint eigenvalue problems arising in the problems of elastic stability.

INTRODUCTION

The problem of proving the existence of eigenvalues and eigenvectors for (i) Tu—ASu = 0,
where T and § are certain linear operators in a Hilbert space, and the problem of solving
the eigenvalue problem (i) approximately have been studied by a number of authors.}

1 The results presented in this paper were derived by the author in 1962 during his temporary member-
ship at the Courant Institute of Mathematical Sciences, New York University, and were issued under the
above title in January 1963, as an AEC Research and Development Report NYO-10,425. These results are
published in view of the interest in them expressed by a number of pure and applied mathematicians in
several countries. The paper is presented as it appeared in its original form except for a shortened version of
§ 1 and the illustrative examples at the end of § 4.

+ The articles cited in this paper are only those to which a direct reference is made. For a more complete
list of references concerned with problem (i) see [4, 6, 10, 16, 25, 37].

[Because of the large number of citations made in this paper the system of referencing that is customary
in these pages has not been followed.]
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414 W. V. PETRYSHYN

However, the investigation of both of these problems for (i) was limited mostly to self-
adjoint bounded and unbounded differential and abstract operators. Thus, when 7" and
§ are selfadjoint operators, the existence problem was considered in [4, 5, 8, 10, 14, 25]
in case the operators are positive definite and in [12, 18, 36] in case S is the identity and the
spectrum of 7"contains at most eigenvalues of finite multiplicity. The investigation of the ap-
proximation problem, both for bounded and unbounded operators, led to the development
of a group of direct methods of Ritz, Galerkin, moments, and others [4, 5, 10, 14, 15, 16, 25, 27|
and to a group of iferative methods of gradient type [1, 2, 3, 6, 11, 13, 16, 17, 19, 20, 22, 29,
30, 33, 37]. Unfortunately, as was pointed out in [16], the study of the gradient methods
was almost [33] entirely restricted to selfadjoint and positive definite finite matrices and
bounded operators.

The purpose of this paper is to study both of the above mentioned problems (i.e. existence
and approximation) connected with the eigenvalue problem (i), where 7" and § are linear,
unbounded K-symmetric operators studied in [23, 26, 39] which, asis known [23, 24, 40, 41]
include certain non-selfadjoint differential operators of even and odd order. Our investiga-
tion allows us not only to extend to this larger class of eigenvalue problems (i) the results of
the above authors and to present these seemingly different methods in a more unified
manner but also affords the introduction of a general iterative method for the direct solution
of the eigenvalue problem (i) without the practically inconvenient preliminary reduction
of (i) to an equivalent eigenvalue problem with bounded operators.

After stating in §1 certain properties of K-symmetric and H-bounded operators, in § 2
we consider the problem of existence of eigenvalues and eigenvectors of (i) and their pro-
perties under various conditions on 7" and §. Accordingly, in §§2-1 and 2-2 we extend to
problem (i) the corresponding results in [8, 25] while in § 2-3 we consider conditions under
which the results derived in [14, 36, 18, 12] are also valid for (i). Using the properties of
H,-bounded operators we prove stronger assertions concerning the Fourier expansion and
the completeness of eigenvectors than those obtained in [18,12].

In § 3 we indicate briefly the applicability and the unifying property of the generalized
method of moments for the approximate solution of the eigenvalue problem (i) ; the section
contains slight generalization of the corresponding results of Mikhlin [25] and Polsky [27].
In fact, in § 3-1 we prove two lemmas which generalize the results of Polsky [27] while in
§ 3-2, following Mikhlin, we formulate the generalized method of moments and prove its
convergence. In § 3-3, we obtain as special cases the ordinary Ritz method, the generalized Ritz
method, the Galerkin method, and the method of moments.

In § 4 we investigate a general iterative method for the solution of (i) which at the same
time unifies and extends to the eigenvalue problem (i) with K-symmetric operators the
resultsin [1, 3, 6, 11, 16, 17, 20, 29, 33] obtained there mostly for positive definite symmetric
matrices and bounded operators. Thus, in §§ 4-1 and 4-2 we formulate the method while in
§ 4-3 we derive the basic convergence theorems. In § 4-4 we discuss conditions under which
we obtain the convergence to the smallest eigenvalue and an error estimate for the approxi-
mate eigenvectors. Section 4-5 deals with the problem of constructing various methods and
their special cases. Here we discuss the method of constant factor [6], a relatively new method
called here the method with relative minimal norms[20, 29, 30] and its special cases[2], the
accelerated method with relative minimal norms and its special cases [9, 1], the generalized method
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ON THE EIGENVALUE PROBLEM 415

of steepest descent[15, 3, 33], the method introduced by Hestenes & Karush [11] which we
call the modified method of steepest descent, and others. Finally, in § 4-6 we illustrate the applic-
ability and the numerical effectiveness of the iterative method (4-8) to (4:10) by calculating
(by means of the method with relative minimal norms) the smallest eigenvalue 4, for a self-
adjoint and non-selfadjoint eigenvalue problems arising in the problems of elastic
stability [35].

1. ON A crLass OF K-pP.D. AND NON-K-P.D. OPERATORS

In this section we define a class of linear (in general unbounded and non-Hermitian)
operators in a complex Hilbert space H and summarize some of their properties obtained
in [26, 39] which we will use in the subsequent sections on eigenvalue problems. Especially
those properties are mentioned which are useful in the application of the theory and the
methods discussed in this paper to integral, integro-differential, and differential eigenvalue
problems which need not be Hermitian. For the detailed proofs of the assertions made in
this section see [26, 39].

1-1. Certain properties of K-p.d. and non-K-p.d. operators

Let H be a complex and separable Hilbert space. An operator 7 defined on a dense
domain D;.in H will be called K-positive definite (K-p.d.)? if there exists a closeable operator
K with Dy = D, mapping D onto a dense subset KD, of H and two constants ¢; > 0 and

% > 0 such that (Tu, Ku) =] (ueDy), (11)
| K2 < (T, Ku)  (ue Dy). (1-2)

Let us first note that the class of K-p.d. operators, as defined above, contains among others,
for example, the following operators: (a) Positive definite operators 7'; in this case we
choose the operator K to be either the identity I or, if 7 is also selfadjoint, to be any root
of T. (b) Closeable and densely invertible§ operators 7" when we take K to be 7. (¢) The
operators 7" of the form T'= —§2%+! or T = §2/*2 when for some 7, 0 < ¢ < j, the operator
§%i+i+Dis positive definite ; in this case we take K = §2i+1or K = $2+2, provided, of course, that
K so defined is closeable and such that KD, is dense in H. This class, in particular, contains
ordinary differential operators of an odd and even order and weakly elliptic partial dif-
ferential operators of an odd or even order which in general are non-selfadjoint [24, 40, 41].
(d) A subclass of bounded symmetrizable operators investigated by many authors [38].

Lemma 1-1. If T is K-p.d., then
(a) T s invertible;
(0) Tis K-symmetric; i.e. (Tu, Kv) = (Ku, Tv) (u,ve Dy);
(¢) |(Tu,Kv)|? < (Tu, Ku) (Tv, Kv) (u,veDy);
(d) T s closeable.
T The class of K-p.d. operators with K closed was introduced by Martyniuk [23]. A more general theory
was developed in [26, 39].
1 Let us recall that K is said to be closeable if whenever «, is a sequence in Dy and fan element in H such
that u, - 0 and Ku, - f, as n — o0, then f = 0. Let us add that, as was observed by Rellich [31], in applica-
tions it is more convenient to work with closeable than with closed operators.

§ We will call an operator T invertible if T has a bounded inverse, densely invertible if T is invertible and
the range Ry is dense in H, and continuously invertible if T is densely invertible and R, = H.

52-2
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416 W. V. PETRYSHYN

Let us observe that if the space H is real then the entire discussion in this article
concerning the eigenvalue problems remains valid provided 7 is assumed to be also
K-symmetric.

Let f be an element in H and F(u) the functional

F(u) = (Tu, Ku) — (Ku, f) — (f, Ku) (1-3)
defined on D;. It was shown in [26, 39] that the problem of solving the equation
Tu=f (1-3a)

is equivalent to the problem of minimizing the functional F(«) and that to solve the latter
itis, in general, necessary to extend somewhat the set D, on which F () is defined and with
it also the operator 7. It is known [7, 25, 26, 39] that the variational problem is solvable
and that T possesses a closed and continuously invertible K-p.d. extension. Indeed, this
follows from the following arguments.

Let D[ T] denote the set D, with the new metric

[Zt, Z)] = (Tua KU), IuIZ = [u> u] (U,I)EDT). (1'4)

Clearly, D[ T'] satisfies all the axioms of a Hilbert space except possible that it is incomplete.
Furthermore, in view of (1:1) and (1-2), we have the inequalities

lu] = pillul, 71=ai>0 (ueDy) a
and | Kul <palul, 7o=08>0 (ueDy). (1
Let H, denote the completion of D[ T'] in the metric (1-4).

Lemma 1-2. (a) D[T] is dense in H,.

(b) Hy is a subset of H in the sense of uniquely identifying the elements from Hy with certain
elements from H.

(¢) K can be extended to a bounded operator Ky mapping all of Hy to H, such that K < K, < K,
where K is the closuret of K in H.

(d) The inequalities (1-5) and (1-6) are valid for all u in H,.

Having constructed the auxiliary space H,, it is now easy to solve the variational problem.
In fact, by lemma 1-2 (¢), (f, Ku) is a bounded conjugate linear functional of # in H, and
hence the Fréchet-Riesz theorem implies that to every fixed element fin H there exists
a unique element we H; such that for all « in H|,

(f Ku) = [w, u]. | (1-7)

— et
Sy Ot
N~ ~—

Consequently, the functional
F(u) = [u,u] = [u, w] —[w, u] = |lu—w]>—[w]?, (1-8)

which by definition (1-3) is valid for all # in D,, can be also extended to the entire space H,,.
Considered in H,, F(x) attains its minimum d at ¥ = w with
d = inf. F(u) = F(w) = —|w|2 (1-9)
u €Hy
We shall formulate the above result in the following lemma.
+ The operator K is called a closure or a trivial closed extension of K in Dy ifit is defined on the set Dg(> D)

consisting of all elements « in H for which there exists a sequence {z,} in Dy and an element f'in H such that
|lu, —u|| > 0 and ||Ku,—f||— 0 as n - co; in this case we set limKu, = Ku = f.
n
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ON THE EIGENVALUE PROBLEM 417
LemmMa 1-3. If T'is K-p.d., then d = inf F(u) is attained at u = w, where w is uniquely determined
' u€Hy

by (1-7). Furthermore, the value of d is given by (1-9).

Let us note that, in general, the element w which minimizes the functional F(«) is not
necessarily in Dj, so that the equation (1-34) may not have a solution unless 7" could be
somewhat extended. Theorem 1-1 below shows that for K-p.d. T such an extension is always
possible.

TuareorREM 1-1. If T is K-p.d., then T can be extended to a closed K-p.d. operator Ty such that
Ty =2 T, T, is continuously invertible, and Dy, consists of all elements realizing the infimum of F(u) in
H, as f ranges through the entire space H.

The operator Tj will be called a solvable generalized Friedrichs extension (s.g.F.e.) of T. For
K = I, theorem 1-1 furnishes a selfadjoint extension of a symmetric positive definite operator
constructed by Friedrichs [7, 25].

REMARK 1. T may still have other K-p.d. extensions. But among these extensions there
is only one, the operator 7; we have just constructed, whose domain is contained in H, and
which in some sense is maximal [26]; i.e. if 7" is an arbitrary K-p.d. extension of T such
that D, =« T, then Ty =2 T".

‘Theorem 1-2 below can be used in one of the often applied techniques in the investigation
of complicated operator equations which consists in comparing these equations with much
simpler operator equations, the properties of which are well known. The ‘closeness’,
defined in some sense, of the two operator equations implies the community of various
important properties such as existence and uniqueness of solutions, the applicability of
various approximate methods and their convergence, etc.

‘THEOREM 1-2. If T is K-p.d. and K is closed with Dy = Dy, then there exists a constant 0, > 0
such that | Tul < 0,|Ke]  (ueDy). (1-10)
Furthermore, T s closed, R; = Ry = H, and

1
gl < gl <[ Kul < yolul <A1 Tul < 0,31 K| (weDy).  (111)
172 1-72

CoroLLArY 1:1. If T'is K-p.d. and K is closed with Dy = Dy, then the operators T and K form
an acute angle. T
Finally in this section we state a theorem concerning s.g. Friedrichs extensions for a much

more general class of nonsymmetric and non-K-symmetric operators of which we shall
make use in § 4.

THEOREM 1-3. Let T be K-p.d. and L be an operator with D, = Dy. If there exist 5, > 0 and

5 > O such that |(Lu, Ku)| > 5, |ul? (ue D), (1-12)
|(Lu, Ko)| < mplul o] (v,ueDy), (1-13)

T Following Sobolevsky [34] we say that two densely defined operators P and R form an acute angle if
Dy = Dy, (Pu, Ru) > 8||Pu|| |Rul| for all u in D, and some & > 0, and they vanish only at zero element.
Later on we will also use this definition in a slightly more extended sense in which the above inequality is
replaced by the more general one: |(Pu, Ru)| > &||Pul| ||Ry| for all u in D,.
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then L has a 5.g.F.e. Ly such that Ly is closed, Ly= L, Ly is continuously invertible, and L, = T, W},
where W, is a certain extension of the operator Ty ' L in H,,.

As was shown in [39], by specializing our operators we derive from theorem 1-3 certain
results of Lax & Milgram [21] under less restrictive conditions.

1-2. Hy-bounded operators

In later discussion we shall also have the opportunity to deal with closeable operators §
such that Dy= H,. We call such operators Hy-bounded.t If § is Hi-bounded, then by .S we
denote the operator from H, to H defined by Su = Su. This definition is explained by the
lemma.

Lemma 1-4. If S is Hy-bounded, then S is bounded, i.c., || Su| < n5|u| for some constant 55 > 0.

Lemma 1-5. If S is Hy-bounded, then STy is bounded in H.

An operator §'is called Hy-compact if §' is Hy-bounded and S is compact, i.e. if for every
bounded set @, in H, the image S, is compact in H. Such operators are of importance in
proving the existence of eigenvectors and the applicability of various approximate methods.
The three theorems below offer us various possibilities and conditions under which the
operator 741 S8is compact in H,. This, as is known, is useful in the application to differential
equations and eigenvalue problems.

THEOREM 1-4. The assertion (a): S ts Hy-compact = (b): T41S is compact in Hyand (¢): STy?
is compact in H. Furthermore, (b) = (¢). If in addition we assume that K is closed and Dy = D,
then (a) <= (b) <> (c).

TueoreMm 1-5. If S is Hy-bounded and KTy is compact in H, then T4 1S is compact in H,,.
Our last theorem in this section offers us the possibility of verifying the compactness of
L' in Hy, where Dg> Dy and L is a complicated operator satisfying the conditions of

theorem 1-3 and L, = 7, W, by verifying instead the compactness of the simpler operator
T51S.

TueoreM 1-6. Ly1S is compact in Hy if and only if T51S is compact in H,.

ReMARK 2. In §§2, 3, and 4 whenever we consider the unbounded K-p.d. operators it
will be assumed that, if necessary these operators have been already extended.

2. THE EIGENVALUE PROBLEM 7u—ASu = 0

In this section an attempt is made to present a theoretical basis for the general discussion
in the next two sections of the generalized method of moments and of an iterative method
for the approximate solution of the eigenvalue problem (2-1) below. Here we derive some
of the general properties of the eigenvalues and eigenelements of (2:1) and also consider the
problem of their existence under various conditions. Since some theorems in this section
represent generalizations of the corresponding theorems for the selfadjoint eigenvalue
problems considered in [25] which are proved by similar arguments, the details of some

1 If K is closed and Dy = Dy, then in view of theorem 1-2, the concepts of H,-boundedness and Hj-com-
pactness of § reduce to the concepts of T-boundedness and T-compactness introduced by Gokhberg &
Krein [9].
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ON THE EIGENVALUE PROBLEM 419

parts of their proofs could have been omitted. However, for the convenience of the reader
the proofs are given in full.

The results in this section represent an extension to the eigenvalue problem (2-1) of the
corresponding results for the selfadjoint differential and abstract eigenvalue problems
obtained in [5, 8, 10, 12, 14, 18, 25, 36]. At the same time we also obtain some additional
new results.

2-1. General remarks

Let H be a complex Hilbert space and let us consider now the linear eigenvalue problem
in H Tu—ASu =0, (2:1)

where T is K-p.d., §'is an operator with D¢= D;, and A is a complex number. A value of
A for which (2-1) has a nontrivial solution u in D, will be called an ¢igenvalue of (2-1) and
u its corresponding eigenelement. The set of all eigenvalues of (2-1) will be denoted by po(2-1)
and called the point spectrum or discrete spectrum of (2-1). The number of linearly independent
eigenelements # belonging to the same eigenvalue A will be called the multiplicity of A.

Let us assume for the present that §'is K-real; i.e. (Su, Ku) is real for all % in D;. It is easy
to see that §'is K-symmetric on D.

Lemma 2:1. If T is K-p.d. and S is K-symmetric, then
(a) All ergenvalues A of (2-1) are real.
(b) The ergenvectors w and w’ belonging to distinct eigenvalues A and X' are orthogonal in the
sense that (Tw, Kw') = 0 and (Sw, Kw') = 0.
(¢) The set pa(2-1) contains at most countably many ergenvalues.

Proof. (a) Let A be an eigenvalue of (2-1) and w its corresponding eigenelement. Then
Tw = ASw and hence (Tw, Kw) = A(Sw, Kw). This and (1-1) imply that (Sw, Kw) = 0 and
therefore that

_ (Tw, Kuw)

= (Sw, Kw) °

The relation (2-2) shows that the eigenvalue A is real and that it can be expressed in terms
of the corresponding eigenelement. Formula (2-2) will be very useful in our later discussion.

(b) Let w be an eigenelement of (2-1) with eigenvalue A and w’ an eigenelement with
eigenvalue A’ %= A. Then, in view of lemma 1-1,

0= (Tw, Kw') — (Kw, Tw") = A(Sw, Kw") — A" (Kw, Sw")
= (A—=2A") (Sw, Kuw")
and (Tw, Kw') = A(Sw, Kw") = 0.

bl (2-2)

(¢) Ifto each eigenvalue of (2-1) we order its corresponding eigenelements normalized
in the metric (1-4), then the totality of these eigenelements must constitute an orthonormal
set in the separable Hilbert space /. Consequently, the set po(2-1) can at most be
denumerably infinite.

We see from lemma 2-1 that the eigenvalue problem (2-1) has at most countably many
eigenvalues. The problem whether there exist any eigenvalues of (2-1) at all is, in general,
a difficult one and will be discussed below for some classes of eigenvalue problems (2-1) in
which the operators 7" and § satisfy some additional conditions.
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2:2. K-p.d. exgenvalue problem
Let us assume that there exist constants #, > 0, f, > 0, and f; > 0 such that

(Su, Ku) = f||ul*  (ueDy) (2:3)
and either | Ku|? < fy(Su, Ku) (ueDy) (2-4)
or §'is closeable and [ Sul|? < fy(Su, Ku) (ue D). (2-4")

The eigenvalue problem (2-1) in which the operator 7" is K-p.d. and $ has the above
properties will be called K-p.d. Let H] be the completion of D, in the metric

[u, 0]y = (Su, Kv),  |u]f = [u, u],. (2-5)

It is not hard to see that under our conditions the space Hj is contained in H in the sense of
identifying elements from | with certain elements from H. Furthermore, the inequalities
(2-3), (2+4) and (2-4") remain valid for all # in H{ provided, of course, that for u in H] we
replace (Su, Ku) by [u, 4], and K and § are also used to denote their extensions to all of H] in
case of (2-3) to (2-4) or (2-3) to (2-4"), respectively. Since (2-1) is K-p.d., the functional E ()
defined by (Tu, Ku)
(Su, Ku)
is positive on D, and therefore has the infimum (inf.) which we denote by A,. Thus, there
exists a minimizing sequence {u;} in Dy such that

inf. B(u) = lim E(s) = A,. (2:7)

u€eDr

E(u) = (2+6)

However, from the existence of such a minimizing sequence of elements we cannot conclude
without imposing further conditions that there exists an element w, in D, or even in H, for
which E(w,) is actually equal to A,. Before we discuss this question let us first observe that
the comparison of formulas (2-2) and (2-6) shows that the eigenvalues A of (2:1) can be
looked for among the values of the functional £(«). In fact, we have the following useful

lemma.
Lemma 2:2. The inf. A, of E(u) is an eigenvalue of (2-1) if and only if there exists an element
w, == 0 in Dy such that (Tw,, Kw,)
1> 1

(Swy, Kuy) —
Moreover, if such a w, exists then A, is the smallest eigenvalue of (2-1).

The proof of this lemma is omitted for, as will be seen below, it will be a special case of
lemma 2-4. Let us note that lemma 2-2 allows us to replace the problem of finding the least
eigenvalue of (2-1) by the problem of finding an element in H realizing the inf. of E(u)
provided, of course, that such an element exists. To prove its existence we assume the
validity of the following condition:

(a): Every set of elements in Hy, = Hyn H| bounded in the Hy-norm ts compact in the Hi-norm.

Lemma 2-8. If condition () is satisfied, then H, is a subset of H| in the sense of identifying uniquely
the elements from Hy with certain elements from HY. In this sense Dp< Hy< Hj.

Proof. Let hy be an arbitrary element in /,. Since D,.is dense in H|, there exists a sequence
{u,} in Dy such that |u,—#%)| -0 as n—o0. Thus, {u,} is a Cauchy sequence in H; and, in
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particular, it is bounded in Hy-norm. Hence, by condition («), {,} contains a subsequence
{u,,} which is convergent in the H{-metric. Since Hj is complete there exists an element £,
in Hj such that |u,.—#h,|,— 0 as ¢—oc0. Let us note that in view of lemma 1-2 and the pro-
perties of Hj it follows easily that every subsequence of {u,}, convergent in the H{-metric,
converges to the same element %, in A and that any two equivalent sequences in H,-norm
produce equivalent subsequences convergent in the H{-metric. We can thus assign to each
element 4, of H;, a unique element 4, of Hj, the identification obviously being linear and
such that 4, = A, for elements £, in D,.. Moreover, this identification correspondence is also
one-to-one for if ; = 0, then &y = 0. To see this note first that, by (2-3), ||u, ]| < |4, |,—0
as 1—>o0 and, by (1-6), | Ku,,— Ku,| <y, |u, —u,|~0 asiand j increase indefinitely. This
and the closeability of K imply that for any « in D,

(A u] = lim [u,,u] = lim [w,,u] = lim (Tu,, Ku) = lim (Ku,,, Tu) = 0.

Conscquently, we must conclude that %, == 0, as was to be shown.
Let us note in passing that lemma 2-3 is also valid under the weaker condition

(Tu, Ku) > &(Su, Ku) (ueD;)

for some constant & > 0. However, the stronger condition (a) is imposed for it is essential in
the existence proof.

Let us writec E(u) in the form [, ]
E(u) =—"= 2.6/
) =1 a; (2-6")

and observe that, in view of lemma 2-3, the right side in (2:6") which is defined for all
u in Dy has also meaning for all » in Hy. We may, therefore, use it to extend the functional
E(u) to all of H,. Furthermore, since D, is dense in A, with respect to both the H, and H]
metric, it is not hard to show that

inf. E(u) = inf. E(x) = A,. (2:7)

u€eDr u€ Hy

An element w = 0 in H, will be called a generalized eigenelement of (2-1) belonging to A if it
satisfies, for every u in H,, the identity

[w: u] = /1[11), u]l; (2‘8)

the number A satisfying (2-8) will be called a generalized eigenvalue of (2-1). It is evident that
every ordinary eigenelement w belonging to the eigenvalue A of (2-1) is also a generalized
eigenelement of (2-1) but the converse need not be true.

LemMmA 2-4. If there exists an element w, == 0 in Hy such that
Elw) — L@l ) , 2.9
(1) [wy, wi], : (29)

then w, is a generalized eigenelement of (2-1) belonging to A, and A, s the least generalized eigenvalue

of (2:1).

Proof. Suppose there exists w; 5= 0 in H such that (2-9) is valid. Let us define the bilinear

functional Q(v,u) = [v,u] —A,[v, u],

53 Vor. 262. A.
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for all # and v in H,. By (2:7), Q(u,u) = 0 for all u in H, with Q(w,,w,) = 0. If 0 is any real
number, % any element in H,, and y = 0Q(w,, u), then using the fact that Q(w,,w,) =0

we get 0< Q(wl +yu, w, -H’u) = YQ<u: wl) +7Q(w19 u) + Mz Q(u’ u)
which, after substituting the value for y, reduces to the inequality
0]Q(w,, )2 {2+0Q(u, 1)} > 0.

Since the left member of this inequality changes sign with ¢ small unless Q(w), u) =0, we
conclude that Q(w,,u) = [w,u]—A,[w,u], =0 for all u in H. Clearly A, is the least
generalized eigenvalue of (2-1). This establishes the validity of lemma 2-4.

Let us note that if w; e D, and u is chosen to be any element in Dy, then from the last
identity we derive the equality (7w, —A,Sw,, Ku) = 0 valid for all  in D;. Since the set
KDy is densein H, Tw,—A,Sw, = 0;i.e. A, is an eigenvalue of (2-1) and w, its corresponding
eigenelement. That A, is the least eigenvalue follows from (2:6) and the definition of 4,.
Thus, lemma 2-2 is also proved.

TuEOREM 2-1.1 (@) If condition (@) is satisfied, then the problem (2-1) possesses a generalized
ergenelement w, == 0 in Hy belonging to A, which is the least generalized eigenvalue of (2-1).
(b) If, in addition, we assume that S is either Hy-bounded or is such that for some 5 > 0

|Sull < ngle|l  (ueDy), (2-10)

then w is an ordinary eigenelement of (2-1) corresponding to A, which is the least eigenvalue of (2-1).

Proof. Let {u,: (u,e Dp,n=1,2,...)} be a minimizing sequence of elements for E(u)
which is normalized in the Hj-metric. Then |u,|; = 1 and lim E(u,) = lim |u,|? = A,. This

implies that the sequence {«,} is bounded in the Hjnorm. Hence, by condition (a), it
contains a subsequence which converges in the H{-metric. For simplicity, this subsequence
will also be denoted by {u,}. Let us note that, in view of (2-7), for any u in H, we evidently
2> 2.
have Bl = Aufufis henee g oty a7 > 0 2 11)
and b 12—, 1, + 1,7 > 0. (2:12)
It is not hard to see that the sum of the two left members is
20 | |® = Ay Jet 31+ [t 2= A4 |2, |31}

and approaches zero as n and m increase indefinitely. Hence the left members in (2+11) and
(2-12) approach zero as 7 and m increase indefinitely. In particular

{|u,—u,|2—|u,—u,|3}—~0 as n,m->c0. (2-13)

nl

Since Hj is complete and {u,} is a convergent sequence in H] there exists w; € H{ such that
|u,—w,|;—>0, as n—>oco. Then clearly |w,|, =1 and |u,—u,,|;—>0 as n,m—>oo. This and
(2-13) imply that |u,—u,|—0 as n,m—>co. Hence the sequence {x,} converges also in the

T Theorem 2-1 offers an extension of the results obtained by Hilbert & Courant [5] and Friedrichs [8]
for selfadjoint (s.a.) differential eigenvalue problems and of Mikhlin [25] for abstract s.a. and positive

definite eigenvalue problems in H. The proof of theorem 2-1(a) follows essentially the arguments of the
above authors.
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Hj-metric. In view of lemma 2-3, the sequence {u,} converges in H, to the same element w,
in H;. Thus, [w,, ;]
A = Ew) =124 = lim E(u 2-14

1 ( l) '.wl’wl]l Y ( n)’ ( )
i.e. w, solves the minimum problem. Lemma 2-4 implies that w, is a generalized eigenelement
of (2-1) corresponding to A; which is clearly the least generalized eigenvalue of (2:1).

To prove theorem 2-1 () it is sufficient, in view of lemma 2-2, to show that w,e D,. To

do this let us first observe that since, by theorem 2-1 (a), w, is a generalized eigenclement
we have for all « in H, and in particular for all « in D, the identity

[wlau] = Al[wlau]l (uEDT): (2°15)
which, on account of the first hypothesis on § and lemma 2-3, can be written in the form
[wy, u] = A, (Swy, Ku) (ueDy). (2-16)

Let us recall that by theorem 11 the domain D, of T consistst of all elements in H realizing
the minimum of the functional F(u) = [u,u] — (Ku, f) — (f, Ku), where f ranges through all
of H. Therefore, if in particular we put f = A, Sw, and use the relation (2-16) we obtain in
this case for the value of F(u) the quantity

F(u) = [, u] = [u, 0] — [wy, u] = [u—w,]|>—Jw,|*. (2-17)

The relation (2:17) shows that F () attains its minimum at # = w,. This shows that w, ¢ D,.
and therefore, by lemma 2-2, w, is an ordinary eigenelement belonging to the smallest
eigenvalue A, of (2-1).

Ifinstead of the first we use the second condition (2:10) on S, then as was shown in § 1 the
operator § can be extended to closure to S defined on all of Hy; hence, to prove theorem
2-1 (b), all we need is to replace in (2-16) the operator § by §. This completes the proof of
theorem 2-1.

To determine the succeeding generalized or ordinary eigenvalues of (2-1), lemma 2-1 (),
which is also valid for the generalized eigenelements, suggests looking for the second
generalized or ordinary eigenelement w, of (2-1) among the elements of the set

[{(1) = {u; ue H, [wlau:]l = 0}‘

It follows from (2-8) that the condition [w,, 4], = 0is equivalent to the condition [w,, «] == 0.
Furthermore, if such an element w, exists, then

A, = inf E(u) = E(w,) = [wo,w,)]

ueH} B [w2a w2]l .
In general the generalized eigenelements w,,, belonging to 4, ,, if they exist, are such that
Aws = E(w,,,) = inf E(u), (2-18)
ueHy

where H) = {u: ue Hy, [w,u], =0 (i=1,2,...,n)} provided, of course, that the existence
of the generalized eigenelements w,, w,, ... w, belonging to the increasing set of generalized
eigenvalues A, A,, ..., A, has been already established.

t We recall that, as was stated in remark 2, in §§ 2 and 3 the operator T is understood to be an extension
constructed by theorem 1-1 and, hence, it is continuously invertible.

53-2
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TureoOREM 2-2. If (2-1) is K-p.d. and condition () is satisfied, then (2-1) has countably many
generalized eigenvalues Ay, 2y, ..., A, ..., determined by the variational principle (2-18) such that

A,—>00 as n—>00; the corresponding generalized eigenelements wy, w,, ..., w,, ... form a complete set
in each of the spaces Hy, H, and H.

Proof. We proceed to establish the existence of the generalized eigenelement w,,,

belonging to A,,, = inf. £(z) assuming that the existence of the generalized eigenelements
ue€H"

Wy, Wy, ..., w, belonging to the corresponding increasing set of the first n generalized eigen-
values A}, A, ..., A, is already established. Theorem 2-1 (a) justifies such an assumption.

Let {4;: w;eD, = Dpn Hy (1 =1,2,3,...)} be a minimizing sequence of elements for £ ()
on Hj3 which is normalized in the H{-metric. Repeating the same argument as in the proof
of the previous theorem we come to the conclusion that there exists w,,, € [, such that

|, —w,,1|, 0, |u

i 1

—W,,|—>0 as i—>o00. (2-19)

Evidently, |4|,—|w,,,], and E(y) = |4;|*~ |w,.,|% as i—oco. Hence |w,,|; =1 and
Ew,.,) = A,,,. Furthermore, since ;e D,, it follows from (2:19) that w, ,< Hj. In fact,
by (2:19), [w,,,wi]y = lim [w,w;], = 0 and [w,,,,w;] = lim [, w;] = A; lim [, w; ], = 0,

Jj=1,2,...,n. Thus w,,, solves the minimum problem. To prove that w,,, is a generalized
eigenelement of (2-1) belonging to 4,,,; we have to show that

[wn+1>u] = /In+1[wn+]9u]l (2'20)

for all « in H,. Using the same arguments as in the proof of lemma 2-4 and the property of
A, we easily derive the validity of (2-20) for all v in /7. Let u be an arbitrary element in /

n
and w = u— 3 [u, w;],w;. It is obvious that w e Hj and for this w the relation (2:20) is valid.
=1

Since -
[w, W, 1]y = [4, w,,1], — 21 [u, wj]l [wja Wortlr = [ w, 1]
’” (2-21)
n
and [w, wn+1] = [ua wn+1] - 'ZI [u, wj]l [wja wn+1] = [ua wn+1]’
j=

it follows that the identity (2-20) is valid for all « in H,. Hence w,, is a generalized eigen-
element of (2-1) belonging to the generalized eigenvalue A, ,, which is clearly the smallest
generalized eigenvalue following A,. It is obvious that, since the set H,, = H] is separable
and infinite dimensional and {w,} is an orthonormal set in H,,;, the set of corresponding
generalized eigenvalues {A,} is countable and has infinity as its only limit point. In fact, if
A,—> Ay <00, then |w,|? = A, |w,|} = A, < Ay, where {w,} is the Hj-orthonormal sequence of
generalized eigenelements belonging to {4,}. Thus, {w,} is bounded in the H,-norm and
therefore, by condition (), is compact in /]. But this is impossible since {w,} forms an
orthonormal sequence in Hj.

To prove the second part of theorem 2-2 note that, in view of lemma 2-3, it is sufficient
to show that every element in H; can be approximated arbitrarily closely (in the sense of
the norms in Hy, H{, and H) by some linear combination (possibly different in each case)
of {w;}.
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n
Let u be any element in Hj, and u, = 3 [u, w;], w;. If we put v, = u—u,, then [v,, w;], = 0
1

i=
and [v,,w;] = 0 for j = 1,2, ...,n. Hence v, e Hj and therefore, by (2-18),
|1) |2 |vn|2 = 2
Apoy St Or - |val3- (2-22)
Ivnll /1n+1
Since |v,|? = |u—u,|? = |u|?—|4,|? < |4|? and A,,,— 0 as n—> 00, (2-22) yields
lu—u,|,—~0 as n-—>oco. (2-23)
This and (2-3) also show that
nd (2-3) also show lu—u) >0 as n—>o0. (2-24)

Furthermore, if m > n, then the inequality 0 < |u,,—u,|* = |4,,|%>— |u4,|? < |4|? shows that
the sequence {|u,|?} is monotonically increasing and bounded. Hence |u,,—u,| =0, as
n, m—>o0. Since H is complete, lemma 2-3 and the relations (2-23) and (2-24) imply that
lu—u,| >0 as n—>o0 (2-25)
Thus, from (2-23), (2-24), and (2:25) we see that the set of linear combinations of {w,} is
dense in Hy, in the sense of all three norms. This completes the proof of theorem 2-2.

TureoreM 2-3. If in addition to the hypothesis assumed in theorem 2-2 we also assume that S satisfies
the conditions of theorem 2-1 (b), then the problem (2-1) has countably many eigenvalues A, such that
A,—> 00, as n—> 00, and the corresponding eigenelements w, form a complete set in each of the spaces
Hy, H{ and H.

Proof. Theorem 2-3 follows from theorem 2-2 and the fact that under the additional
conditions on S all elements w, belong to D;.. The proof of the latter assertion is exactly the
same as the proof of theorem 2-1 (). Lemma 2-2 completes then the proof of theorem 2-3.

Before we go on in our discussion let us remark that in view of the importance of condi-
tion () it is interesting to know whether it can be replaced by any other condition. To that
end we prove

LemMA 2-5. Let S satisfy conditions (2-3) and (2-4). If S is also H{-bounded or is closeable and

such that 1Su] < pglu|, (ueDy), (2-26)

then condition () is satisfied if and only if T'=1S, is compact in Hyy, where S, is either S or S.
Proof. Assume that condition («) is satisfied. Let ¢, be an arbitrarily bounded set in H;
1.e., there exists an M, > 0 such that
lu| < M, (ue@,). (2-27)
By condition (), @, is compact in the Hj-metric. Hence we can extract from it a sequence
{u,} such that |u

m—Uy|1—>0 as m,n—>o0. (2-28)
Using (1-4) and lemma 1-1 (¢) with 7" = §, we get
| T18 (=) |* = (So(p—y), KT™1So(tt,—,))?

< =t} (So 18, (up—t,), KT8, —u,)). (2-29)
In view of lemma 1-5, lemma 1-4 or (2-26), the incquality (2-27), and (2-28) we derive
from (2-29) the relation

| T80 (— ) |* < 4ME 75| So T N KT - oty — 2,3 >0

as m,n—>00. Hence the operator 71§, is compact in H,.

1 This part of lemma 2-5 remains also valid if S satisfies the weaker conditions specified in theorem 2-1 ().
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To prove the converse assume that 7-15; is compact in /; and @, is an arbitrary set of
elements in /;,, which is bounded in the Hynorm; i.e. there exists M;, > 0 such that

lul < My, (ueQpy). (2-30)
Since 171§, is compact in H, we can extract a sequence {u,} from @, such that
| 718y (u,,—u,) >0 as m,n—>00. (2-31)

Let us also observe that our conditions on § imply that the formula
[4,v], = (Syu, Kv) (2-32)

is valid for all u,v e Hj. In fact, it is valid by definition for all #,ve D, and by the continuity
of S,, as an operator from H| to H, it remains valid for all u,ve H]. Therefore, by (2:30)
and (231), - fu, —u,[F = (So(t—10), K, =,)) = [T 4S0(tly— )t~}

< 2My, | T18y(u,,—u,)|—0 as n—>oc0. (2-33)
Hence, {1} is a convergent sequence in the H{-metric; i.e. @, is compact in Hj-metric and,
consequently, condition («) is satisfied.

Let us note that if D2 D, and the inequalities (2-3) and (2-4) are valid for all ue D,
then S is K-p.d. and the completion of Dy in the metric (2:5) is a Hilbert space H, <= H.
Using theorem 1-1 we can extend § to the K-p.d. s.g. Friedrichs extension. Let us denote
this extension by S. In this case we can also approach the problem of this section in the
following way. Since $~! exists and is defined on all of H we can apply it to equation (2-1)
and obtain an equivalent equation

S1Tu—du=0 (ueDp< H), (2-1a)
in which 4 = S-1T, considered as an operator in H,, is symmetric and positive. In fact,
[Au,v], = (Tu, Kv) = (Ku, Tv) = (Ku, S4v) = [u, Av], for all x and v in D;.. Thus, we can
introduce the space H, as the completion of Dy in the metric [u,v], = [4u,v];. Since
[u,v], = [du,v], = (Tu, Kv), we see that H, = H,. The positive operator 4 can be extended
to a selfadjoint operator in H). Let 4 also denote this extention and let us regard the
eigenvalues and eigenelements of (2-1) to be the eigenvalues and the corresponding
eigenelements of the extended operator 4. Since H, = H,, our condition («) is unchanged;
i.e. every set bounded in the H ;-metric is compact in the /;-metric. Thus we can extend to
the eigenvalue problem (2-14) with extended 4 all the results obtained in [25] for the
selfadjoint and positive definite eigenvalue problem.

Let us note that the inconvenience of such an approach to the problem (2:1), even in
case S is K-p.d., is that we do not know, in general, under what conditions will the eigen-
vectors of 4 satisfy the equation (2-1) in the usual sense and furthermore it requires first the
extension of § and then the computation ofits inverse $~! which generally presents a practical
difficulty.

2:3. K-real ergenvalue problem

In this section we consider the problem of the existence of eigenvalues and eigenelements
of (2:1) under conditions different from those assumed in the previous section. Our basic
assumption here is the condition:

(B): The operator G(A) = T—AS' is continuously invertible for all complex numbers A except
possibly for the eigenvalues A of (2-1).
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Let us observe in passing that, for example, condition (£) will hold if the spectrum ¢(2-1)
of (2:1), i.e. the set of all A for which G(A) is not densely invertible, contains only eigenvalues
and S is a bounded operator in H. Indeed, if this is the case, then for any A in the resolvent
set p(2-1) of (2-1) the range space R of G(1) is dense in /I and the inverse G~ exists and is
bounded on R;. Consequently, to obtain condition (f) it is thus sufficient to show that
G(A) is closed for each 1€ p(2-1). Let {u,} be a sequence in D, = D, and fin H such that
|u,—u| -0 and | Gu,—f| -0, as n—>o00. Then, since $ is bounded and u,—u,

Tu, = Gu,+ASu,—~f+ASu, as n->co.

Hence ue D, = D, and Tu = f+4ASu; i.e. Gu = f, G is closed, and R, = H.

It will be seen below that condition (£) allows us to reduce the investigation of the eigen-
value problem (2-1) to the class of symmetric eigenvalue problems investigated by
Heuser [12] and Kharazov [18].T To that end we consider the space D[ 7] introduced in
§1-1. Although D[T] is, in general, not complete it satisfies all the conditions imposed on
the space considered in [12,18]. Let us also define the operator N = 71§ which maps
D[T]into itself. It is not hard to see that the definition (1-4) of the metric in D[7"] and the
K-symmetry of § imply that N is a symmetric operator in D[ T]. In fact,

[Nu, v] = (Su, Kv) = (Ku, TNv) = [u, Nv] (u,veD[T]).
By means of the operator N the problem (2-1) can be written in D[ 7'] in the form
| u—ANu =0 (2-1a)
or Nu—pu=0, p=1[A, A==0. (2-15)
It is obvious that if A == 0 is an eigenvalue of (2-1) with multiplicity m and ¢,,...,9,, are
linearly independent eigenelements belonging to A then, since |¢| = 0 if and only if |«| = 0,
@15 -+ @, are also linearly independent eigenelements in D[ T'] belonging to the eigenvalue

4 =1/ of N. The converse is also true provided that the eigenelements belong to D[ T7].
Furthermore, from the relation

N—p=TS—uT), u=1J\, (2:34)

we conclude that A == 0¢ po(2-1) if and only if # 4 0¢ po(N). The relation (2-34) and condi-
tion (f) also imply thatif 4 == 0 is not an eigenvalue of N then the operator N— g maps D[ T']
onto itself; i.e., the operator N satisfies the property (£) imposed by Heuser [12]. Also, the
quantity [Nu,u] = (Su, Ku) cannot be equal to zero for all z in D[T] unless Su = 0 for all
u in Dy, for otherwise from the identity

(S ut-0), K(u+0)) — (S(u—v), K(u—v)) +i(S(u-+iv), K(u+v))
—i(S(u—iv), K(u—iv)) = 4(Su, Kv) (u,ve D),
we would have to conclude that (Su, Kv) == 0 for all « and v in D,.. Since KD, is dense in H,
this would imply that Su = 0 for all  in D..

t Both papers are essentially an extension of the results obtained by Wielandt [36]. In his study
Kharazov used the arguments applied by Kamke [14] to the differential and selfadjoint eigenvalue problem
(2-1). The distinct and interesting feature of this argument is that the existence proof does not involve the
use of the variational principle for the functional E(u).
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Thus, the operator N in D[ 7] satisfies all the conditions imposed by Heuser. Consider
also the space Hy= D[ 7] and let N denote the closuret of Nin D[ T with D[T] = Dy < H,,.
Then using the results of [12] it is now not hard to derive the following two theorems.

THEOREM 2-4. (a) The operator N is the unique selfadjoint extension of N.

(b) The spectrum o(N) of N is a nonempty closed set of real numbers such that o(N) = o(N),
po(N)—{0} = po(N)—{0}, ¢o(N) = co(N), and ro(N)—{0} = ro(N) = ¢, where co(N) and
ra(N) denote, respectively, the continuous and the residual spectrum of N and § is the empty set.”:

(¢) The set co(N)—{0} consists exactly of all nonzero limit points of the eigenvalues of N which
are not ergenvalues themselves.

THEOREM 2-5. The operator N has at least one nonzero eigenvalue.

CoRrOLLARY 2:1. The problem (2-1) has at least one nonzero eigenvalue.

We see from theorems 2-4 and 2-5 that the passage from the eigenvalue problem (2-1)
in H to the eigenvalue problem (2:14) in D[T] = H, changes in general the nature of the
spectrum ¢(2-1) of (2:1) from the pure point spectrum of (2-1) to the mixed spectrum of V.
Furthermore, it was shown in [12] that the set of eigenelements in D[ 7"] belonging to the
corresponding nonzero eigenvalues of NV or (2-1) is not, in general, large enough to permit
the expansion of each element of the form Nu = 7T-1Su into a Fourier series with respect to
these eigenelements.

However, suppose that in addition to condition (f) it is known that

(y) The spectrum o(N) of N, considered as an operator in D[ T'|, contains only eigenvalues of finite
multiplicity with zero as its sole possible limit point.

Then from the results obtained in [18] for the operator N in D[ T'] and from the above
discussion it is not hard to derive for the problem (2-1) the following additional theorem.

THEOREM 2-6. (a) The set of eigenvalues || < |, < ... < |A,| < ... with the corresponding
set of eigenelements wy, Wy, ..., W,, ... normed in the sense of the metric (1-4) possesses the following
extremal property: On the set of elements ue D[ T'| satisfying the condition [u, w;] = 0 or [u,w;]; = 0
Jori=1,2,...,n—1, the absolute value of the functional

(2-35)

attains its maximum equal to |pu,| = 1/|4,|, n =1,2,3, ..., at u = w,. Furthermore, the eigenvalues
Jfound by this variational method exhaust entirely the set po(2-1).
(b) For any u in D[T] we have the representation (generalization of the Hilbert—Schmidt
theorem) ©
715 — 3 T K0) S (50 Kw)w, (2-36)

i=1 /12 i=1

8

[

which converges in the Hy- and H-metric to T~'Su.

t The operator K is called a closure or a trivial closed extension of K in Dy ifit is defined on the set Dg(> Dy)
consisting of all elements « in H for which there exists a sequence {,} in Dy and an element fin H such that
lw, —ul| > 0 and ||Ku,—f]| = 0 as n — c0; in this case we set limKu, = Ku = f.

I Let us recall that u€co(N) < Ry_, is dense in H, and (N—p)™! is unbounded on Ry_, while
pero(N) < Ry_, is not dense in H,.
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(¢) For A¢ po(2-1) the unique solution u in Dy of the equation Tu—ASu = f, for any fin H, is

representable in the form © ]
u=T"f+1% =1 (f, Kuw,) w; (2-37)
=14~

converging in the Hy-metric.

Let us observe that using the properties of the Hy-bounded operators established in § 1
we can prove a stronger assertion than that contained in theorem 2:6 (b) and, at the same
time, derive the necessary and sufficient condition for the set of eigenelements, determined
by theorem 2-6 (a), to be complete both in H and in H.

LemMA 2-6. If S ts Hy-bounded, then for every ue D[ T'] the series

Su (Tu, Kuw)) Sw;, = Z [u, w;] Sw; (2-38)

i=1

IIMS

~.

converges in the H-metric to Su.

Proof. Since [w;, w;] = 6;; we have for any ue D[T7] the Bessel’s inequality

n
3 1w, wl* < Jul?

valid for each n. This and the completeness of H, imply that there exists an element v in H,
such that

V= % [, w;] w,. (2-39)
i=1
Since § is Hy-bounded, lemma 1-4 and (2-39) imply that

n
Zl [u> wi] wi
i=

-0 as n—>o00;

So—3 [u,w] Sw,| < 0 lo—
=1

i.e. the series Sv =3 [u,w;] Sw, (2-40)
i=1

converges to Sv in H. Using the fact that 7-!is bounded in H and T-1Sw; = 4; 'w; we derive

from (2-40) the series [, w ]
T-18y = Z = (2-41)

1

Taking into account the proved formula (2-36) we get
T-(S0-Sw) = 3 [“’ Uil 715 = 0,

whence, in view of (2-40), we obtain the expansion (2-38).

THEOREM 2-7. If S is Hy-bounded, then the set of eigenelements {w;} belonging to the evgenvalues {A;}
determined by theorem 2-6 (a) is complete in Hy if and only if Su =+ O whenever ue Hy and u = 0.

Proof. Necessity. We have to show that the completeness of {w;} in H, implies that Su 4 0
whenever ue Hy and u = 0. Assume the contrary; i.e. {w;} is complete and Su* = 0 for some
u* % 0 in Hy. Then for every ¢ we have

[w;, u*] = (Tw;, Ku*) = A;(Sw;, Ku*) = A,(Kw;, Su™) = 0.

This contradicts the assumption that {w;} is complete in H,. Hence we must have Su* = 0.

4 Vou. 262, A.
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Sufficiency. Let us first observe that, since D[ 7] is densc in H,, to prove the completeness
of {w;} in H, it is sufficient to show the validity of the expansion

u= i [, w,] w; (2-42)

for every u in D[T]. Suppose that Sw == 0 whenever we I, and w = 0. Since {w;} is an

n
orthonormal sequence in D[ 7] = H,, the sequence {E [u, w;] wi} converges in Hj-norm to
i=1

some element v in /; i.c. ©
0= 3 fu,ulu.
i

8

Hence, by lemma 1-4, Sv =3 [u, w,] Sw, (2-43)
=1

[

Taking into account lemma 2-6 we obtain from (2-43) the equality
S(v—u) = f [, w;] Sw, —Su = 0.
i=1

Our assumption then implies that v = u; i.e. {w;} is complete in H,.

CoroLLary 2:2. If S is Hy-bounded and Su =+ O whenever ue Hy and u -i= 0, then the set {w,} of
eigenelements determined by theorem 2-6 (a) is complete in H.

Proof. 'The proof follows from theorem 2-7, the inequality (1-1), and the denseness of H,
in H.

3. GENERALIZED MOMENTS METHOD (G.M. METHOD)

In this section we indicate briefly the applicability and the unifying property of the
g.m. method for the approximate solution

Tu—ASu = 0, (3-1)

where T'is K-p.d. and S is such that Dg> D;. This will allow us to extend the applicability
of the g.m.-method to non-selfadjoint diffcrential eigenvalue problems of an even and
odd order.
3-1. Some general lemmas
To justify the g.m.-method we shall first discuss the relevant results concerning the

eigenvalue problem Nx—px =0 (3-2)

where N is a compact operator in some Hilbert space X.

Let {X,} be a projectionally complete sequence of expanding finite dimensional subspaces
of X[28],1.c.| f— P, f|l - 0,as n—>o0, where P, is an orthogonal projection of X on X,. By the
approximate ergenvalues and eigenelements of N we mean the cigenvalues 4™ and the corre-
sponding eigenelements w®e X, of the operator N, = P, N; i.e. 4 and w®™ are such that

N, ™ — gy = 0, (3-3)

Let us first note that, since {X,} is projectionally complete in X and N is compact, the
sequence {N,} converges uniformly to N [32]; i.e.,

|N,—N|—-0 as n—oo. (3-4)
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The following lemmas due to Polsky [27] summarize the relevant properties of the
eigenvalue problems (3-2) and (3-3) for compact operators.

LemMA 3-1. The set of eigenvalues of N s identical with the set of limit points of all sequences of
approximate ergenvalues.

LEmMMA 3-2. Let p be an eigenvalue of N and y™ of N, such that " — u. From every sequence of
normed approximate eigenelements {w™} belonging to y™ we can extract a convergent subsequence so that
its limit w is an eigenelement of N belonging to p.

REmARK 3. It was shown in [27] by an example that for an arbitrary compact operator
it is not possible to obtain every eigenelement as a limit of approximate eigenelements.
However, any element in an invariant subspace of N can be obtained as a limit of a sequence
of elements belonging to the corresponding approximate invariant subspaces. This implies
that, in particular, if the eigenvalues 4 of N and their corresponding approximations 4" of
N, are simple, then any eigenelement of N can be obtained as the limit of the corresponding
approximate eigenelements of N,.

It was already noted that lemma 3-1 in this generality was first proved by Polsky [27] by
means of the theory of analytic functions. For the sake of completeness and in view of the
difficulty in obtaining his paper we prove below two general lemmas concerning a
bounded, not necessarily compact, operator N so that lemma 3-1 and theorem 3-1(a)
below will follow from them as corollaries.

LemMA 3-3. Let N, be a sequence of bounded operators on X converging uniformly to a bounded
operator N. If yPe a(N,) and y»— p* as n->co, then u* e o(N).

Proof. Suppose, contrary to the assertion, that 4* ¢ ¢(N). Then y* € p(N) and, since p(N) is
open, there is a neighbourhood U of x* belonging to p(N) and a constant ¢ > 0 such that
| (4.— N)x| = ¢|«|| for all xin U and x in X. Hence

[ (a=N,) 2l = || (= N) x| = (N, = N) x| = (e~ N=N,[) [ #]  (ne U, xe X).
Since | N,— N|| -0, as n— 0, there is an integer n, > 0 such that | N,— N|| < ic for n >n,,.
Therefore, | (u—N,) x| > }¢| x| and || (g— N)"' (N,— N)x| < }|«| for all yin U and x in X
so that for n > n, the equation y = (u4—N,)x = (4— N)x+ (N—N,) x is uniquely solvable
for cach g in U and each y in X. This is, however, impossible since g, — g*, as n—o0. Thus,
u¥ea(N).

LemmaA 3-4. If|N,— N| -0 and p* is an isolated point of the spectrum o(N), then there exists
Umea(N,) such that y— p*, as n— co.

Proof. Assume, contrary to the assertion, that there is a subsequence {N,} of {N,},
1My, ...,—~00, and some neighbourhood U of x* such that o(N,,)n U = ¢. Since u* is an
isolated point of ¢(N) we can take U so that it contains no other point of ¢(N) except p*.
Let C'be a circle with centre ¢* and radius # > 0 so that Cliesin U. Itis not hard to see that
there is a constant ¢, > 0 such that

[(a—=N)x| = a2l (reC, xe X). (3-5)
Furthermore, since for e C and xe X
I (a=N,) 2l = | (= N) x| = (N=N,)) x| = (= N—= N, [ ) |«
542
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and | N—N,| — 0, there is an integer n, > 0 such that
(= N) 2l > gerllxl (ne G, xe X). (3-6)

This shows that the resolvents R(x) = (¢1—N)~! and R, (u) = (4—N,,)"! are uniformly
bounded for all ze C and n; > n,. From the identity

R, (n)—R(p) = R(u) (N—N,)) R, ,(#) (peC) (3:7)
and the inequalities (3-5) and (3:6) we obtain for all #, > n, and ye C
1R, (1) = R()]| < 2/e}| N— N, || >0 (3:8)

as n;—00. The relation (3-8) shows that the sequence {R, (4)} of analytic functions con-
verges uniformly on C to the function R(x). The properties of analytic functions imply that
the resolvent R(x), being a uniform limit on C of {R,,(4)}, will be also analytic in the interior
of C. This, however, contradicts the fact that 4* is an isolated point of o(N), i.e. that u* is
an isolated singular point of R(x) which, as is known, is either a pole of R(x) (in which case
it is an eigenvalue of N of some finite multiplicity) or an essential singularity of R(x). This
contradiction completes the proof of lemma 3-3.

REMARK 4. It is easy to see now that lemma 3-1 is an immediate consequence of lemmas
3-3 and 3-4. Indeed, since N is compact in X, its spectrum ¢(N) consists at most of a count-
able number of eigenvalues of finite multiplicity which are themselves isolated points of
o(N); furthermore, the sequence of operators {N,} = {P, N} converges uniformly to N.
Thus, if N is compact, the hypotheses of lemmas 3-3 and 3-4 are satisfied ; their conclusions
yield the validity of lemma 3-1.

3-2. G.m. method
In this section we consider the problem of the approximate solution of the eigenvalue
problem (3-1) by means of the g.m. method [26]. The essence of this method consists in the
following. We choose a system of linearly independent elements ¢, Dy, ¢ = 1,2, ..., which
is complete in Hy, and then construct another system K¢,.T The approximate eigenelement
w of (3-1) is taken in the form .
u = 3 dpg, (39)
where the coeflicients a(®, afy, ..., a® are determined from the condition that
(TwP —ASwP, Kg;) =0 (j=1,2,...,n). (3-10)

The condition (3-10) leads to linear homogeneous algebraic system

n

1 It is easy to see that in this case the system {K¢;: ({ = 1, 2, ...)} is complete in H. In fact, if v is any
element in H such that (v, K¢p;) = 0, then by theorem 1-1 there is an element w € D, such that

(v, Kp)) = (Tw, K¢p;) = [w, ;] =0 for i=1,2,..,n, ...

Since {¢;} is complete in H;, w = 0 and, consequently, v = Tw = 0;i.e. {K¢,}is complete in H. It is known
[26] that the converse is also valid if Dy = Dy.
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with A as a parameter, where f; = (7¢;,K¢;) and s; = (S¢;, K¢;). The system (3-11)
evidently admits of a nontrivial solut10n for the af’s if and only if

det Itij“"/lszjlzj':l - 0. (3'12)

The vanishing of this determinant provides us with an algebraic equation of the nth degree
whose roots A{, A{, ...,A? will represent the approximations to the eigenvalues of (3-1).
The coefficients a{® in (3 9) are then determined from the homogeneous system

S {t {t— AP s} o) = (3-13)
=

The following arguments offer the justification of the g.m. method.

If we define the operator N by setting N = 7-1§,1 then the eigenvalues of N, being
defined as those values of x for which

Nu—pu = 0, (3-14)

will be reciprocals z = 1/A of the eigenvalues A of our original problem (3-1), as is seen at
once by operating on both sides of (3-1) with 7-!. However, the eigenelements w of N,
which by definition lie in , will not in general satisfy (3-1) in the usual sense unless we D;;
for that it is sufficient that w e Dy. Nevertheless, any eigenelement of N will be considered as
an eigenelement of (3-1) (if necessary, in generalized sense). Considered in H,, the condition
(3-10) reduces to [w{’—AT2Suw,$;] =0 (j=1,2,...,n) while (3-11) can be written in
the form

i {5, —ut;;} af = 0, (3-15)

where s;; = [N¢;, ;] and 4; = [¢;, ¢,], which is precisely the system one obtains when the
method is applied to equation (3-14) in the space H,,.

Let {¢;} denote the set of elements in D, obtained by orthonormalizing the sequence {¢,}
in the Hy-metric. It was shown in [26] that the orthonormalization process leads to one and
the same result; i.e. wi® will not be changed. However, if we take w{® in the form

n
up = 3 dpy,
the system (3-15) is then replaced by its equivalent and more convenient form
zyud<n>—-/¢d<">——0 (j=1,2,...,m), (3-16)

where i = [Ny ¥l (bg=1,2,...,n).

Let H, be a subspace of H, determined by ¢, ¥,, ..., ¥, and P, the orthogonal projection
of H, onto H,. Since {;} is complete in H,, the sequence {H,} is projectionally complete
in H,. It is easy to see that the equation

P, NuwP — puw™ = 0 (3-17)

t Let us note that the domain of definition of 7-1§ is equal to Dy and, therefore, if Dg < H,, then by N
we shall also denote the extension of 771§ to all of H, while in case Dg © H, we will use N to denote the
restriction of 71§ to H,,.
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is equivalent to the system (3:16); i.e. the applicability of the g.m. method to (3-14) is
equivalent to determining a{?, ..., a{ from cquation (3-17). It is now casy to prove

THEOREM 3-1. If TS can be extended to a compact operator N in H,, then
(a) All eigenvalues of (3:1) (or of N) and only they can be obtained as limits of all possible
sequences of approximate ergenvalues determined by the g.m. method (3-11).

(b) Let {A™} be a sequence of approximate eigenvalues of (3-1) converging to an ergenvalue A # 0
of (8:1). Then the sequence {w™} of the corresponding normalized approximate eigenelements contains
a subsequence converging to an eigenelement w of N belonging to u = 1/A.

(¢) Assuming additionally that S is K-positive and the sequences {A\{*} and {A} of approximate
and exact eigenvalues are arranged in the order of increasing magnitude, each as many times as its
multiplicity indicates, then {A{} converges to A, as n—co.

Proof. Since N is compact in H;, and {H,} is projectionally complcte in H,, the sequence
of operators {N,} = {P, N} converges uniformly to N in H; and ¢(N) consists at most of a
countable number of cigenvalues of finite multiplicity which arc themselves isolated
points of ¢(N). In view of this and the discussion preceding theorem 3-1 and thc fact that
o(N) = o(T-1S), the asscrtion of theorem 3-1(a) follows immediately from lemmas 3-3
and 3-4.

To prove theorem 3-1 (b) note that the sequence {w™}, being bounded, is weakly compact.
Lct us use {w™} also to denote a subsequence which converges weakly to some clement w in
H,. Evidently the sequence {#®w®}, where p® = 1/A®, converges weakly to uw and, since
Nis compact, { Nw®} converges strongly to Nw. Hence, in view of this and (3:3), the cquality

Nw— poow® = Nw— N,w™ = Nw— Nw® -+ Nw® — N, w®
and the uniform convergence of N, to N in H, imply that
| Nw — p®uw®| < | Nw— Nuw®| +|N—N,||w*| -0

as n—00; i.e. gPw®—> Nw in the Hy-norm. Consequently, Nw = uw, as desired.

In order to prove (¢) note that, since S is K-positive, the operator N is selfadjoint and
positive in H,. So if we characterize the eigenvalues of N as extreme values of the quotient
[ Nu, u]/[u, u], using the recursive characterization, we havc all the information we need to
establish theorem 3-1 (¢). In fact, we have for all normalized clements u orthogonal to the
first (k—1) cigenelements of N

UP < max [P, NP,u, P,u] = max {{ Nu,u| + [P, NP,u, u] — [ Nu, u]}
< py+max |[P,NP,u,u]—[Nu,u}| < u.+|P,N,L,— N|.

In the same way we obtain the inequality
iy < max [Nu,u] = max {[P, NPu,u] +[ Nu,u] - [P, NPu, ul} < i) + | N— B, NB,.

Thus, |4 —u| < |N—P,NP,| -0, as desired. This completes the proof of theorem 3-1.

REeMARK 5. Theorem 3-1 shows that the applicability of the g.m. method for the approxi-
mate calculation of the eigenvalues and eigenelements of the problem (3-1) depends
essentially on the complete continuity of the operator 71§ in H,. This underlines the
usefulness of the discussion in §1-2 which deals with various conditions under which the
operator 71§ can be verified to be compact in H,,.
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Furthermore, theorem 3-1 allows us to formulate the eigenvalue problem for non-
selfadjoint differential and integrodifferential equations of an even and odd order. For
further discussion of this topic as well as for the statement of theorem 3-1 (a) see [23, 24].

3:3. Special cases

In this section we show that, by specifying the operators K and §, the most important
direct methods used in the approximate solution of the eigenvalue problem (3-1) can be
deduced as special cases of the g.m. method. In each of these special cases theorem 3-1
remains valid provided, of course, that the operators satisfy the indicated conditions. This
will always be assumed to be the case.

(i) Ordinary Ritz method. If K = I and S = I, then T is selfadjoint and positive definite
on Dy, H, is the completion of D in the metric [, v] = (7Tu,v), and the g.m. method reduces
in this case to the ordinary Ritz method

3 (T4 )~ )} o) = (311)

which has been extensively studied and used in various applications [4, 10, 25, 27].
(ii) Generalized Ritz method. In this case we take § == I so that 7" is K-p.d. and the g.m.

method becomes .
gl {74, K¢]) A, K¢ e = (3-11y)

In particular, when the operator 7 is selfadjoint and positive definite we may take K to be
some root of 7.

(i) Galerkin method. If K = I, then T is selfadjoint and positive definite so that the
g.m. method reduces to the well known [4, 25, 27] Galerkin method determined by the

system n
2 (T8 ¢5) = A(Sh, i)} i) = (3:115)

The space H, is here the same as in the case (i).
(iv) Moments method. If K = T, then T is continuously invertible, Hj is the space D, with
the metric [u,v] = (Tu, Tv), and the g.m. method reduces to the ordinary moments of

moments n
2 {(T¢, T¢;) —A(S4;, T¢;)} af = (3-11;)

Since in this case H; = D;, we see that N = 71§ and the eigenelements of N satisfy actually
the equation (3-1) in the ordinary sense.

Let us point out at the end of this section that, in view of the wide freedom in the choice
of K and the generality of §, the g.m. method can be applied to a much larger class of
problems than any of the methods mentioned above which it unifies. Furthermore, when
applied to the differential eigenvalue problems the g.m. method will give a better character
of convergence than the methods of Garkin or Ritz.

4. A GENERAL ITERATIVE METHOD

The purpose of this section is to present and investigate a new and fairly general iterative
method for the approximate solution of the eigenvalue problem

Tu—ASu = 0, (4-1)
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where T'is K-p.d.t and §'is K-p. relative to D, with Dy= D,; i.e.
(Su, Ku) >0 (ue Dy, u = 0). (4-2)

It will be shown that the method, which is developed here for the problem (4:1) with
unbounded and nonsymmetric operators 7" and S, has also the property of unifying a
number of existing iterative schemes which were developed by various authors [1, 6, 11, 13,
15, 17, 20, 22, 29] mostly for positive definite symmetric matrices and bounded operators.
Atthesame time it extends the applicability of these special methods to our class of problems.
Itishoped that thisinvestigation will atleast partly fill the gap indicated byKantorovich [16]
and at the same time form the basis for the possible discovery of new and more effective
schemes when specified to a particular class of problems.

4-1. The formulation of the method

In this section we formulate the method and derive some of its properties. Let us assume
at the outset? that there is given a well-known K-p.d. operator C and constants M, > M, > 0

such that Do=Dp, a1y, Ku) < (Tu, Ku) < M,(Cu, Ku) (ue D), (4:3)
and for every 7 in H of the form r = Tu—ASu, ue D, the equation

Ch=r (4-4)
is uniquely and relatively easily solvable for 4. It was observed before that if A is an eigen-
value of (4-1) and ue D, a corresponding eigenvector, then it follows from (4:1) that

() = <(£Z:,%' (4-5)

This implies that the eigenvalue problem (4-1) is equivalent to the problem of finding solu-
tions of the operator equation Tu—A(u)Su=0 (ueDy). (4-6)

We present a method for finding the solutions of (4:1) which is based on this observation
and which avoids the transformation of the problem to one with bounded operators.

To solve (4:6) we use the following iteration scheme. If u, & 0 is an arbitrary initial
approximation belonging to D, and y is the iterant obtained at the ¢th step of our process,
then the succeeding iterant u;,, is taken in the form

Uy = u;—C-Y,  (6=0,1,2,...) (47)

T

or U = U;— 1By (¢=0,1,2,...), (4-8)

1

where 7; denotes the residual at u;; i.e.
r= Tu,— A8y, ANi=Ay) (1=0,1,2,...) (4+9)

t Since our concern in this section is to develop a practical procedure for the approximate calculation of
eigenvalues and eigenvectors of (4-1) we assume, for the sake of simplicity, that the operators T, S, and C
satisfy rather strong conditions. However, later we will indicate how these conditions may be somewhat
relaxed. As a matter of fact, most of the results in the first few sections are also valid when 7 and C are only
K-p. Furthermore, it will always be assumed in this section that the eigenvalue problem (4-1) possesses
eigenvalues with corresponding eigenvectors which have the properties used below. If necessary, this can
always be attained by making recourse to § 2.
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the element 4, is the solution of the equation
Chy=r, (1=0,1,2,...) (4-10)
and ¢, 7 =0, 1,2, ..., are real numbers to be determined by some process. Observe that it

is not necessary to construct the inverse operator C~! since, as is the case in our method, it
is sufficient to know the solutions of Ck = r for special 7 in H. Let us note that whenever #; is
a nonzero iterant in Dy then u,, is also a nonzero iterant belonging to Dy so that (4-8)
determines a well-defined sequence {} in D;. In fact, if 4; 5 0 and ;e D, then by (4-6),
(4-9), and (4.10) (Ch,Ku) =0 (i=0,1,2,...) (4-11)
and, consequently, by (4-8)

(Cuyyy, Kuyy) = (Coy Kuy) + 82 (Chi, Khy) - (1 =0,1,2,...). (4-12)

Since C is K-p.d. and D, = Dy, the relations (4-12), (4-10), and (4-8) show that «;,, =0
and thaty; ;€ D, whenever #;4= 0 and %;= 0. The last condition may always be assumed to be
satisfied for, if ; = 0 for any ¢, then «; is an eigenvector of (4:1) and so a solution is obtained.

REmARK 6. Before we proceed let us note that the method (4:7) to (4-10) is analogous to
the scheme presented by the author [26] for the solution of nonhomogeneous operator
equations in H. Furthermore, it is not hard to see that, in view of (4-3), the element 4;
determined by (4-10) is equal in direction to the gradient of the functional A(x) at 4 = y;
relative to the metric in the space H,, where H, is the completion of D, in the metric

[u,v], = (Cu,Kv), |u|§= [u, u], (u,v€DT)' (4'13)

Hence we see that under present conditions the method is analogous to some sort of a
gradient method and as such it is an extension of the procedure developed in [11] for the
solution of (4-1) with finite selfadjoint and positive definite matrices.

For the sake of completeness let us compute the gradient of A(«) in H,. Since

grad A(u) = {1/(Su, Ku)} [grad (Tu, Ku) —A(u) grad (Su, Ku)],

it is sufficient to find the grad (74, Ku) and grad (Su, Ku) in H,. To compute grad ( Tu, Ku)
take fixed vector # and 4 in D, and consider the function f(¢) = (7 (u+th), K(u+th)) for
real t. A simple calculations shows that

dfjdt|,—o = 2% (Tu, Kh)

and |2 (Tu, Kk)| < |(Tu, Kh)| = |[C~'Tu, k],| < |C1Tul|,|k|,.
Hence, for a fixed |4|, the equality is attained for such % for which % is proportional to
C~1Tu. Thus, in H,-metric, grad (7u, Ku) = 2C-'Tu. Similarly, grad (Su, Ku) = 2C~'Su
(in H,). Combining this with our formula for grad A(z) (in H,) we get the formula:

grad A(u) = {2/(Su, Ku)} C-Y{Tu—A(u) Su} (inH,);
i.e. grad A(u) = {2/(Su, Ku)} A,
where £ is determined by Ch = Tu—A(u) Su.

We first show that under very general conditions on {£} the sequence {1}} converges. To
find these conditions we consider the change

AN = A(u) —A(u—th) (h + 0), (4:14)

55 VoL. 262. A.
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where for notational reasons we omitted ‘2’ on u, £, and ¢. Inview of (4-8),a simple calculation
1% p

shows that
Al = — 2tA(u) R (Sh, Ku) + t2A(u) (Sh, Kb) —|—2i£(2¢ £IZ)~—_t2_(7_73 Kb)
o (Su, Ku) — 2t9?(S/z Ku)—l—t2(SIz Kh)
t2/1( )(S/zr K/z)+2t(C/z K/z)—t2(le Kh)
- (Su Ku) —2t% (Sh, Ku)+t2(S/z Klz)

_ d{aA(u) P+ 2t —et?} _

1 —2bt+6t2 dp(ua ), (4'15)
. 2

where we define d= %gg:K:)) , plut)= 22 b;l—s:ct 5 (4-16)

. _ (Sh,KK) , _ R(Sh, Ku)

with “= Ch KR " T (Su,Ku)
_ (Sh,Kh) — _ (Th,Kh) (4-17)

“= Su,Ku)’ °= (Ch, KR)’

s=A(h)—A(w).

Formula (4-15) shows that for a given « in D; the change Al depends on the behaviour of
p(u,t), as a function of ¢, when ¢ varies through the entire real axis from —oo to 400, so that
the mode and the rate of convergence of the sequence {1’} will depend on p(u,¢).

4-2. The graph of p(u,?)
To graph p note that p = 0 when ¢ = 0 and ¢ = 2/as. Moreover, since
1—2bt+ct? = |u—th|}/|u|} > 0 forall¢,

it is clear that p is a continuous function of ¢ for all real ¢ including ¢ = + oo for, in the latter

case, lim p(u, t) = hmp(u t) = —asje.

o
Let us add that p = —as/c also for ¢ = as/2(abs—c). Furthermore, a simple calculation
shows that dp _ 0 (abs—c) t*—ast+1 (418)
dt (1—2bt+ct2)2 -~ ‘
Hence dp/dt = 0 for those values of ¢ for which
(abs—c)?—ast+1 = 0. (4-19)
Since p = —as/c for t = 400, the equation dp/d¢ = 0 has at least one nonzero real root. In

fact, it is not hard to see that it has two distinct roots # and 6 given by

J— sa+./{(sa)*—4(abs—c)}

(abs—c) ’
(4-20)
g S —J{(sa)?— abs—c)}
2(abs—c)
Indeed, if ¢’ is a solution of (4:19), then
asf'—1
abs—¢ = —55

02
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and 02[ (sa)?—4(abs—¢)] = (asf')?—40'%(abs—c)
= (as0")*—4(ast0’ —1)
= (asf’ —2)? (4-21)
. N (2—as0)9 O )
with pW0') = G0ty (1=56) ~ T=40' (4-22)

for the fact that the denominator of p is positive for all ¢ implies that 2—asf’ <= 0. This and
(4-21) imply that the discriminant (sa)2— 4(abs—c) > 0. Hence the equation (4-19) has two
distinct real roots given by (4-20) or equivalently by

2 . 0= 2
sa— J{(sa)?—4(abs—c)}’ sa+J{(sa)2—4(abs—c)}

The foregoing discussion shows that the graph of p(u,¢) depends on the algebraic sign of
(abs—c) and s. Hence the following five cases are sufficient to describe it.
Case 1. 1f s = 0, then

g:

(4-23)

2t
P= g Jmat) =limpwn =0,

5:_(_1_)%, 0:(%)%, mlnp = p(u,0) = J—:b<0

¢

1

J+b>0

and maxp = p(u,0) =
The graph of p in this case is given by figure 1.
Case 2i. If s > 0 and abs—c¢ > 0, then it is not hard to see that in this case

0<f<y <y <@,

h =2 8
where V= 7 2(abs—c)

§ and 6 are given by (4:23); and

~

mlnp plu,b) = I:HZE <0 and maxp=p(u,0) = 050- > 0.
The graph of p is given by figure 2.
Case 2j. If s > 0 and abs—c¢ < 0, thenJ <y" <0<l <y,

~

0

minp = p(u,f) = -~ <0 and maxp=p(u,b) = 6
t ¢

1-046

> 0.
1—-50
The graph of p(u, t) is given by figure 2;.
Case 3i. If s < 0 and abs—¢ > 0, then§ < y” <y’ < 0 <0,

~

m‘inpzp(u,ﬁ)—lfw~<0 and maxp = p(u,0) = 0b6’>0

with figure 3¢ representing the graph of p.
55-2
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440 W. V. PETRYSHYN
Case 3j. If s < 0 and abs—¢ < 0, then y’ < § < 0 <y" < 0 with

~

mtinp:p(u,ﬁ) ZI:%5~<O and maxp = maxp(u,0) :1——€Z5>0’
and the graph given by figure 3.
e
\ 5 0 6 t
Ficure 1
I P AP
2 . Y v

)
m‘
VAR
)
|
Rty
S
@

FIGURE 2: Ficure 2
AP [ Y

6 v 0 7' o y" e
Ficure 3: TFicure 3j

REMARK 7. We see from the graphs that, for a given « in D,, the function p(u, f) attains its
maximum value which is positive at the second root ¢ of equation (4-19). This remark will
be useful when we discuss the choice of the optimum parameter.

4-:3. The convergence of the method
Since d > 0, it is seen from (4-15) and the graphs of p(u, ¢) that, for a given «, A1 > 0 for
all ¢ which are such that {e (0,00) when s =0 (case 1), te (0,7") when s> 0 (case 2),
and te C[y’, 0] when s < 0 (case 3), where C[y’, 0] denotes the complement of [y, 0] in the
set R of real numbers.
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The above remark indicates that at each step of the process the range of ¢ for which
AA > 0 depends upon the iterant «. Let us first show that for a given eigenvalue problem
with fixed operators T, S, K, and C we can determine an interval of variation of ¢ for which
AA > 0 independently of u.

Lemma 4-1. If T, S, K, and C satisfy the conditions of § 4-1, then AA > 0, independently of u in Dy,
Jor any t in the interval 0 <1< 2/M, (4-24)

where M, is the constant determined by (4-3). If in addition we assume that Dy = Dy, and that there
exist two constants my > 0 and [, > 0 such that

(Tu, Ku) = m,(Su, Ku) (ueDy), (4-25)
and (Su, Ku) = {,(Cu,Ku) (ueDy), (4-26)
then AL > 0, independently of u, for any t in the interval
2

Proof. We have seen above that, when s < 0, AAd > 0 for any ¢ > 0 and that, when s > 0,
A > 0for¢in 0 < t < y’. Thus, to prove the first part of lemma 4-1, it is sufficient to estimate
the quantity y’ in the latter case. Since, in virtue of (4-16) and (4-17),

2 Th,Kh) (Sh,Kh) (Tu,Ku Th, Kh
I<y=a= 'Ec;;,'m‘)) - E‘Ch,m)) ‘((su," Ku)) < EC/Z, K/z)) (4-28)
we obtain from (4-28) and (4:3) the inequality 0 < 2/y’ < M, or y’ > 2/M, valid for all
u in Dy. This is precisely (4-24).

To prove the second part of lemma 4-1 note that when our operators satisfy the additional
conditions (4-25) and (4-26) then from (4-28) we obtain the inequality 0 < 2y’ < M, —{;m,
ory’ = 2[(M,—1;m,),i.e. (4-27).

Remark 8. The additional conditions (4:25) and (4-26) will be satisfied, for example,
when we deal with finite matrices or bounded operators in H. In this case lemma 4-1
generalizes the corresponding results for symmetric and positive definite matrices [6, 13].

LEMMA 4-2. If at each step of the process (4-8) to (4-10) the sequence {t;}, t, == 0, is so chosen that
Pizp(uiati) >3>O (/Zi:i:O,i=O,l,2,...) (4.29)

then (a) The sequence {A¥} converges monotonically to some real number A*.%

(b) The series % d; converges.

=0

(¢) The sequence {u'} = { I;’I} is bounded in the Hy-norm and
il1

|C~ Y Tui—Ai8u?)|[,—~0 as i—>o0. (4-30)
Proof. Let t, == 0 be so chosen that (4-29) is satisfied. Since d; > 0, the definition (4-14) and
formula (4'15) show that i i+l — dip, > d16 =~ 0. (4‘31)

1 Since d; > 0, it follows from (4-15) that for the validity of lemma 4-2 (a) it is sufficient to assume that
pi>0fori=0,1,2,....
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Hence {Ai} is a monotonically decreasing sequence of positive numbers and, therefore,
converges to some number A*.
To prove lemma 4-2 () note that by the recurring relation (4-15)

At = /V‘“dil’i = Ai_l‘“dz‘—lpi—r‘dil’i e T ’lo_jgo djl’j (4’32)

and consequently the convergence of {A}} implies the convergence of the series % d; p;.

In virtue of condition (4-29), this implies the validity of lemma 4-2 (b). J=0
Consider the sequence {u?}. Clearly it is bounded in the Hj-norm since |ui|, =1

(1=0,1,2,...). Moreover, by lemma 4-2 (a) and (4-3), {«’} is bounded in the H,-metric for

(Cuyy Kuy) — (Cuyy Kuy) i < A°

(Su;, Kuy) (T, Kuy)© M,

We see that in this case the upper bound of {#’} depends on the initial element u,. T'o complete
the proof note that (4-30) follows from (). In fact, from () we derive

d__(Ch Kh,)
T (Su, Ku )

|ut|3 = (Cui, Ku?) =

= |C~Y(Tu—AiSu?) |30 as i—co.

Let us remark that when u, is chosen arbitrarily the sequence {1’} may converge to zero,
as i —>o00. However, since by (4:32) the limit 1* = 0 if and only if

Y= 3 df, (+33)

it is rather unlikely that (4-33) may be satisfied in practice.
In order to replace {ui} by {;} in the above lemma we need, in general, some additional
hypothesis on {%}.
Levma 4-3. If in addition to (4-29) we assume that for some 6, > 0
2<d, (1=0,1,2,...), (4-34)
then (a) There exists a constant ¢ > 0 such that lim (Cu;, Ku;) = hm |4;|3 = c.
(B) 0< w3 < |3 < ... <|uli<.. <e.
(¢) |C~Y(Tu,—ASu)|,—>0, as i—>c0.
Proof. Using (4:12) recursively we obtain the relation
%4113 = | 13 (1+8g) = w13 (V4121 8,) (L+8g) = ... = |u0|%1;10(1+tj2gj)a
where g; = | h;|3/|u;|3. If follows from it that { |43} forms a monotonically increasing sequence

which is bounded below by |uO|2 It is known that the product 1—Z[ (142 gj) converges, as

i—>00,if and only if the series Z 7 g; converges. In view of (4:34), the series Z ?g; converges if
<o
Z gJ converges. Since, by (4 3), lemma 4-2 (a), and the assumption 1* > 0,

d; (Tu Ku;)

=% )\A*d (j=0,1,2,..), (4-35)
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the convergence of Z g; follows from (4:35) and lemma 42 (5). Thus, there exists a constant
=0
¢ > 0 such that "

- (1+ gj>—_llml +ll2_c

J=

Evidently, ¢ is the least upper bound of the monotonically increasing sequence {|4;_ |3}
This implies lemma 4-3 (5). The assertion (¢) follows immediately from () and the fact that
lim g; = 0. Indeed, by lemma 4-3 (5),

lim |C1( T —ASy;) |5 = lim [ A;]3 = hm{gz |u;]}3 < chmgZ = 0.

This completes the proof of lemma 4-3.
Suppose there exists a constant /, > 0 such that

(Cu, Ku) = 1,(Su, Ku) (ueDy). (4:36)

The inequalities (4-3) and (4-36) imply that the operators C-17T" and C-1S, considered on
Dy, are bounded in the H,-norm, where C is understood in the extended sense. Let I}, and
N, denote the unique extensions of C~1T, C~1§ to all of H,, respectively.

TueOREM 4:1. Let T, S, K, and C satisfy conditions (4-3) and (4-36) and let {t;} be such that
(4-29) and (4-34) are fulfilled. T hen for any uy== 0 in Dy, the sequence {A?}, where {u;} is determined by
(4-8)—(4+10), converges to a number X* = M,l, > 0 and |C~1(Tu;—AiSu;)|,— 0, as i—>o00. If the
sequence {u;} does not converge weakly to zero (in H,), then there is u* == 0 in H, so that

Wyu* —A*Nyu* = 0. (4-37)
If, in addition, Dy H,, then A* is an eigenvalue of (4-1) and u* its eigenvector.

Proof. The first part of theorem 4-1 follows from lemma 4-3 and (4-36) since, by (4-36)
and (4-3),

=
N

S
NN

pi=

£2> M,l, > 0.
13 Tul?

-
—

To prove the second part note that since by lemma 4-3 (b) the sequence {¢} is bounded (in
H,) we can extract from it a weakly convergent subsequence {«,} (in /,). By hypothesis, the
weak limit #* (in H,) of {«,} is not zero. Hence, in view of the boundedness of C-17" and
C-1S (in H,), the sequence {z;} = {C~! Tu,—A*C~'Su,} converges weakly to Wyu* —A*N,u*
(in H,). But, by the first part of theorem 4-1, {z,} converges also strongly to zero (in H,).
Hence the equation (4-37) is satisfied.

To show the last assertion of our theorem observe that, in virtue of (4-3), 7 satisfies all
the conditions of theorem 1-3. Hence it has a K-p.d. s.g.F.e. T} given by 7} = CW,. Further-
more, the condition Dy2 H, implies that Ny = C~1§ and that (4-837) can be written in the
form Wyu* = 2*C-1Su*. Applying C to both sides of this equation and using the fact that
CW, = T, we obtain ‘the equality Tyu* — V*Su* = 0,

i.e. 1* is an eigenvalue of (4-1) and u* is its corresponding eigenvector.

REMARK 9. Let us remark that so far no use has been made of the freedom in choosing
the operator K. Thus, if K is chosen to be some closed operator with Dy = D, then by
theorem 1-2 and the inequality (4-3) 7" and C are continuously invertible operators for
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which the inequality (1-12) is valid. Hence, in this case, D[T] = H, = H, so that the
condition Ds= H, is always satisfied. Of course, other choices of K are possible so that
Ds= Dy = H,. However, we will not dwell on it now.

Let us remark that if C-1§ is also compact in H,, then |C-1Su,—C-1Su*|,—~0 and
| T-1Cz,|,—0, as k—oo0. Consequently, the boundedness of 7-!C and 7-1§ (in H,) and
lemma 4-3 imply that

U—w*|y < | T1Cz, |y + [AE—A¥| | T-18u, |, - A% | T-1C|, | C-18u, — C-18u*|,—0, (4-38)
k k k 2

as k—o0; i.e. in this case {A’} converges to an eigenvalue A* of (4-1) and {u,} converges
strongly (in H,) to the eigenvector #* corresponding to A*.
At the end of this section let us point out that in general we cannot assert that 1* is equal
to the smallest eigenvalue ( . (Tu, Ku))
A | = Inf Y2~

ueDrT (Sua Ku)
of (4-1). However, if we assume that A, is an isolated eigenvalue of (4-1) of finite multiplicity,
then for some special choices of the operator C' with some additional condition on {1} we
shall show that 1* = A, and that {;} converges to some vector in the eigenspace belonging
to A,.
4-4. Two simple choices of C

In this section we show that if C is taken to be either 7 or §, then the assertions of the
last paragraph indeed take place.

Let us denote by H} the space of eigenvectors belonging to A, and by +H} the orthogonal
complement of H} in H,. Assume that uy¢ ~H} and that {£} is bounded from below by some
constant d; > 0; i.e.

ug = Eow+vy (weHy, |w| =1, &> 0, vee Dpn ~HY) (4-39)
al’ld tl>81 > 0 (i=0, 1, 2,...). (4:'4:0)

Let us define the closeness of two elements # and z in H, by

in2[u; 2], = 1—| 2 _7:_]2 :
sin? [u; z], =1 [|u|2’|z|2 ; (4-41)

It is obvious that sin?[u; z], = 1 when u is orthogonal to z (in H,) and that sin?[u;z], = 0
when « and z have the same direction. Furthermore, it is not hard to show that when
u = Ew+v, where |w|, = 1 and [w, v], = 0, then

sin? [u; w], = [v[3/]ul3. (4-42)
Accordingly we shall say that a sequence of elements {;} converges ‘in direction’ to an
element w in H,-metric if

2
lim sin? [;; w], = lim (1 - ngi"lg) —0. (4-43)
>0 ‘ i=>o0 |;]3 |wl3

Lemwma 4-4. If C is either T or S and the initial approximation u is of the form (4-39), then the
sequence {u,} (n = 0,1,2,...), determined by (4-8) to (4-10) is of the form

u, =§E,w+v, (n=0,1,2,...), (4-44)
where we HY, |w| =1, &, > 0, and v, e Dp.n +tHY.
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Proof. In view of mathematical induction and our assumption (4-39) it is sufficient to
prove (4-44) for n =41, assuming its validity for n =7, i.e. assume that u, =& w4+,
where |w| =1, we H}, £ > 0, and y,€ D~ +H}. Using this assumption and the formulas
(4-8) to (4-10) we obtain in a straightforward manner that when C = T, then

Uy = ty— i =& [1 +i (:13‘ 1)] w+ (1—4) o, + 4TSy,
1
=G Wty (4‘45)
where £, = [1 i (—-1)] >0 and o, = (1—t)o+tAT-180,

and when C = §, then
U =U—th; =E[1+ (N —2)Jw+ 1+ 440 0, — 4,81 Ty,
= &+, (4-46)
where g =&[1+4Ai=2)]>0 and 7, = (1+44)y—481 Ty,
It follows from (4-45) and (4-46) that lemma 4-4 will be proved if we show that

[vi+1’u] [ +1’u] =0
for any ue H}. But this is obvious since v;€ *H} and hence
(v 4] = (1—8) [y, u] +44°(Sy;, Ku) =0
and (31, 2] = 4041, 0]y = L, (1 +44°) [0, u], — 4;( Ty, Ku) = 0.

THEOREM 4-2. If C = T, A, is an isolated eigenvalue of (4-1) of finite multiplicity, {t,} satisfies
conditions (4-29), (4-34), and (4-40), u,is of the form (4-39), and {u;} is determined by (4-8) to (4-10),
then

(a) {43} converges to A* = A;;
(0) {u;} converges in direction to w in the Hy-metric with the error estimate

ju—gol < (S0 uly €+ o). (4-47)

Proof. To prove theorem 4-2 (a) we use lemma 4-4 and (4-45) to get

(T, Kw) = [ 14 G——l):l (TEw, Ku) = [ 1+4 (%- 1) ] (7, Ku).
1 1
Using the above relation recursively we obtain the formula
(Tw,,,, Kw) = lr[ (1+7,) (T, Kw), (4-48)
=J

where 7; = ¢ (/I—J — l) > 0since Ai> A, for all ¢ and (7, Kw) > 0. Formula (4-48) shows

A4
that {(7w,,,,Kw)} is a monotonically increasing sequence of positive numbers. Since
(Tu;,,, Kw) < |u;,,|, lemma 4-3(5) implies that the sequence {(7%,,, Kw)} is bounded.

Consequently, the product H (14-7;) converges, as :—>00. But, for7; > 0, the convergence of
=0

"6 Vor. 262, A.
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ﬁ (1+17;) is equivalent to the convergence of the series > 7,. The convergence of the latter
Jj=0 j=0
imples that 7,0, as j—oc0. Since 4; > 4, and # > §, > 0 we get
A 1 .
(Eﬁl) < g;Tj~+0 as j-—>o0o,
showing that A/ —1,, as j —o0.
The proof of theorem 4-2 (b) follows from (4-44) and the fact that

(A—A;) (Su;, Ku;) = (Tw;, Kuy) — A, (Su;, Kuy)

— (T, Ko — 2, (S0, K. (4:49)
Since 4, is an isolated eigenvalue of (4-1) and, by definition, the next eigenvalue
Tu, Ku
A, = inf. {((s e )) we Dyo lH})} and v, Do +H}
we obtain from (4-49) the inequality (A*'—A,) (Su;, Ku;) = (,—A,) (Sy, Kv) ; i.e.
Ai—2
M (450

To obtain the estimate in the Hy-metric note that |y]%/, = |4|2, — (4;/A,) |o|? < —A; |y 3,
and |4]? < (1/4,) |%|% This and (4-49) show that

A /11 1=

> ———2/12 o2 (4-51)

;|2 = (¥ =2y) |w|§ = (T, Kv;) — A, (Sv;, Kvy)
In virtue of (4-51) and relation (4-42), theorem 4-2 (a) shows that

2 i
i 1, ) =1 < i (23 231) = 0
i.e. {u;} converges in direction to w. The error estimate (4-47) follows also from (4:51). The
proof of theorem 4-2 is thus complete.

We see from the proof of our theorem that if the space H{ is not one-dimensional then
the limit of the sequence {¥;} depends on the choice of u,.

Let us now consider an important case when C = § with Dg = D, = D,.. This will happen
for example when we deal with finite matrices or bounded operators in H. Let us first
summarize in Lemma 4-5 below the following properties which are valid in this case.

LemMA 4-5. If C = S and all conditions satisfied by C are now valid for S, then
(a) (Sh,Ku) = 0, where u and h are determined by (4-8) to (4:10);

— 52
(b) a=1,b=0, c—-d[)(u,t)— 1—|—ct2’
*g(l—st——dt)__ _ 2 2
(¢) &= (Fde =0 for gﬂsm—J{s2+4d}<O and 0= +J{s2+4d}>0

(d) minp = p(u,0) =0 < 0 and maxp = p(u,0) = 6 > 0;
i 1

(e) A(h) —A(u—0Oh) = A(h) —A(u) +A(u) —A(u—0h) = s+db = 1/6;
(f) The graph of p is determined by figures 1, 27, and 3j;
(g) Lemma 4-1 remains valid for t in the interval: 0 < t < 2[{(M,—m,).
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THEOREM 4-3. If C = § and all other conditions of theorem 4-2 are satisfied, then
(a) {A} converges to 1* = A,;
(0) {u;} converges in direction to w in the H\~ and Hy-metric and

Ni— )\t
|, —&w], < (ﬁ) |- (4-52)

Proof. Let us first note that (Su,, Kw) = (1/m) (Tu, Kw) > 0. Furthermore, in virtue of
lemma 4-4 and relation (4-46), we easily obtain the formula

(Stz 1, Kw) =TT (1+7,) (Stg, Kw), (4-53)
=0

where 7; = t;(4;—A;) > 0. This implies that {(S%,,, Kw)} forms a monotonically increasing
sequence of positive numbers which, in view of lemma 4-3 (4), is bounded. Repeating the
argument in the proof of theorem 4-2 (a) we derive the validity of theorem 4-3 (a).
To prove theorem 4-3 (b) we use the same argument as in the proof of theorem 4-2 (5) to
get the inequality
sin® [, w], =

from which we conclude that {} converges in direction to w in the H,-metric. Using the
property of A, and the inequality (4-3) for C' = § we easily show that

|”i|2 %’1’.—’11
lu'l2< Ay A—4,

1

sin? [u, w] = -0 as i—>00;

i.e. {#;} converges to w also in direction in the H-metric.

4-5. Construction of sequences {t,} and special cases

The general method described in the previous sections is not precise until the choice of
the sequence {;} and of the operators K and C has been made. In this section we shall
describe a few methods of constructing the sequence {;} so that the conditions (4:29) and
(4-34) are satisfied. Then by specializing the operators K, C, and § we obtain, in particular,
the most important iterative methods used in the approximate calculation of eigenvalues
and eigenvectors of symmetric matrices and bounded operators as special cases. This will
generalize at the same time these particular schemes to the solution of eigenvalue problems
with unbounded operators. In what follows we shall always assume that conditions (4-3)
and (4-36) are satisfied.

(1) The method of a constant factor. If t; = t, t is a constant, then the scheme (4-8) reduces to
the method of a constant factor

Uy =u—th, (i=0,1,2,...), (4:8y)

1

where 7, is the solution of (4-10) and u, is an initial approximation in D,. We see from lemma
4-1 that for {1} to form a decreasing sequence whatever the initial vector u it is necessary
to limit ¢ to the interval (4-24) or, if additional condition (4-26) is fulfilled, to the interval
(4-27). Let us add that the sequence will not itself, in general, be independent of u,. To
56-2
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show that such a ¢ satisfies conditions (4-29) and (4-34) let us put ¢ in the form ¢ = a/M,,
0 < a < 2. Then, by (4-28), 4;5¢t < a or 2—a;s;t = 2—a > 0. Furthermore,

2
1—2b; 4612 = |u,—thy|3]|w]3 < (1+t|(;—"||~1) = (L41c})?
ill
tH(2—a;s;0/M,) - tH(2—0)

and therefore, pt) = 1—2bt 4612 = (1+tch)?

(4-54)

Thus, to verify the inequality (4-29) it is sufficient to estimate the bound of ¢; independent
of 7. Using (4-36) and the fact that for ¢ = a/M,, 0 < a < 2, {A%}is a monotonically decreasing
sequence we obtain
o, — ks Khy) _ (Shi, Khy) (Chy, Khy) ;  A° (Chi, Khy)
Y (Su, Kuy)  (Chy, Kly) (Tug, Kuy) ™ 1y (T, Kug)®
On the other hand, in virtue of (4-3) and (4-36), the operator 7"-1§ defined on D,.is bounded
in Hy-norm. Hence, using (4-10) and (4-3), we get

\lsl§ = (T, Khy) —(Su;, Khy) < (142°| T1S]) | |5]
< MY(LA| T18]) Jug] | ] (4:56)

(4-55)

Consequently, by (4-55) and (4-56),
(L 4£63)2 < [14+E(A0M 1) (14+20| T-1S) 2 = [1+tM ]2 = M, (4-57)

where M denotes the upper bound of ¢}. This and (4-54) imply the validity of (4:29) with
d =t(2—a)/M. The inequality (4-34) is satisfied trivially. Let us add that the inequality
(4+40) is, of course, also satisfied.

Thus, for the method of a constant factor ¢ all the results derived in the previous sections
remain valid.

Special case. If K =8 = C = I and H is a finite dimensional space, then 7'is a selfadjoint
and positive definite matrix. In this case the scheme (4-8,) reduces to an analogous scheme
for such eigenvalue problems [ 6, 37]. However, even in this simple case our results are more
general, If C = I and K is a symmetric and positive definite matrix (or bounded operator
in H), then T and § are symmetrizable matrices (or operators) and the scheme (4'8;) is
valid in this case[11]. Also, many other choices of the operators C and K are possible.

(i) The method with relative minimal norms.t If

t; = 1/e; = (Cly, Khy) | (Th;, Kh;) = &,

then (4-8) reduces to the procedure

Uity :uz_gz/lz (i:O>1>25"'): (482)
with 4; determined by (4-10). This choice of ; is suggested by the form of the function p(u, ¢)
in (4-15) since one of the basic requirements on f; is that condition (4-29) be not only valid
but also easily verifiable. As will be seen below this is the case when # = é. Let us also
observe that when the operator C+ 7" and § has also the property that (Su, Kk;)=0
(1=0,1,2,...) then the method (4-8,) has the following geometrical meaning: The choice

t Incase C = K = § = I'and T is a bounded, selfadjoint, and positive definite operator in the real space
H the method (4:8,) was suggested by Krasnoselsky [20] and investigated by Pugachev [29, 30] and
Bessmertnykh [2]; see also Altman [1].
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t; = & implies that the vector 4, is the orthogonal projection in the sense of the Hj-metric
of the iterant %, on ;. Consequently, %, , is obtained from %, by subtracting fromit the projec-
tion of %; on #; so that the norm |y, |2 decreases at each step of this process in such a way that
its magnitude is a minimum. For that reason we call it the method with relative minimal norms.
To verify our conditions (4-29) and (4-34) note that by a simple calculation

AR g 1

p(ui) ei) - I_leé'z_l_czézg = lwbzé:z+€;é~? > Ml MOE 82 > 0, (4'29)
where we have used the fact that by (4-3)
1 |
0< JA <G < M, (4-34,)

—

and that, in virtue of the discussion in (i),
(1=2h+48) < (1452 < [ 145,01 | = Mo,
2

Thus, we see that at the same time we have verified conditions (4-34) and (4-40) so that
for this method all the results derived in §§ 4-3 and 4-4 are valid.

Special cases. If we choose C = T, then ¢ = ¢ =1 for each ¢ and the method (4-8,) is
essentially equivalent to the method

o s (Tu, Ky
Tu,,, — ViSu, Ai— ((Su Ku;

(i=0,1,2,...), (4-85)

which could be regarded as a generalization of the Birger-Kolomy scheme [22] for the
unbounded eigenvalue problem (4-1). In particular, if K = 7, then 7" and § are Hermitian
positive definite operators and the procedure (4-8;) reduces to the method used in [22].
Obviously, by choosing K, T, and $ properly we obtain all the schemes of the form (4-85)
considered in [22]. Hence, if u, satisfies (4-39), theorem 4-2 gives the convergence of these
procedures. The method (4-8y) is also related to the Schwarz constants method [4]. Let us
add that using theorem 2-7 with slightly stronger conditions on § one can derive for the
method (4-8,) with C = T an estimate for 1! — A, which is analogous to the estimate derived
by Temple [35] for a differential eigenvalue problem.

Another suitable and important special case of (48,) is obtained when we choose C = S.
In that case Dy = D, = Dy, (Su;, Kk;) = 0 for each 7, and, in view of (4-3) and (4-25), the
choice & = (Sh;, Kk)[(Th; Kh;) = 1/A(k;) has the property that 0 < 1/M; <, < 1/m,. Thus,
for this case theorem 4-3 is valid provided #, is of the form (4-39). At the end let us remark
that the choice of X is still at our disposal.

(iii) Acceleration of the new method. We introduce a parameter > 0 in the process (4:8,) so
as to get the scheme Uy, = t—aBh, (i=0,1,2,...). (4:8,)
Again a simple calculation and the result from (ii) show that for 0y = [M, (14 (a/M,) M)2] !

2ot A AR) _ Ga(2—a)
b 08) = 1—2b,08,+¢;026  ~ 1—2b,a8,+c;(az,)?

= 0a(2—a). (4-295)
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Hence conditions (4-29) and (4-34) are satisfied for any « in the interval
0<a<?2. (4-58)
However, if additionally we know that there exist constants ¢ > ¢ > 0 so that
(Tu, Ku) )
0<9< (Su,Ku) <Q (ueDT): (4 59)

then the interval (4-58) can be somewhat extended. Indeed, from the equality (4-29,) and
the inequality (4-59) we obtain the inequality

|2 —a(1—A[A(h ))]>5z-06[2~06(1-91/Q)]_

bl of) = 1—2b,08,+c;0%8 = 1—2b06,4¢,a%?
Combining this with the inequality (4-29,) we derive
Pl o) > Sya[2—2(1—g/Q)] > 0 (4-299)
for « lying in the interval 0<a<2(l—q/Q) L (4-60)

Special cases. (j) If K= C =8 =ITand T'is a bounded, selfadjoint, and positive definite
operator satisfying condition (4-59), then our results yield in this case the corresponding
results of Altman [1].

(77) Ifin addition to the conditions in () we take @ = 2, which clearly belongs to the
interval (4-60), then the procedure (4-8;) reduces to the method of normal chords [19].

(iv) The generalized method of steepest descent.t If t; = 0;, where 0, is determined by (4-23),

then in view of Remark 7 the choice ¢ = 0, has the property of minimizing the functional

A(u;,,) so that the scheme (4-8) reduces in this case to the generalized method of steepest

descent Uy = 1= 0k (i=0,1,2,...), (4'8,)
which is a well-known procedure in the case of finite symmetric and positive definite
matrices [15, 3]. Let us observe that according to the graph of p the roots 6, can be, in
general, both positive and negative. Since p; = p(u;, ;) > 0 and, by (4-22)
1/p; = 1/0,—b; < [1/0,] + [ b}

we see that to verify the validity of (4-29) it is sufficient to show that

|1/6,] = $lays;+{(a:5)*—4(a;bi5—¢)}|  and |4
possess upper bounds which are independent of z.

To that end note that by definition of 4, and (4-57) we have || < |/;],/|%|, < M while
by (4-28), (4-3), (4-36), and Remark 7 we have |a;5;| < M, +1°/l,. Furthermore, this implies
that AR |7, ~ A o~

(s —al < 18] las] 6 < g1t (las |t < 07 (M4 +27).
2

Thus, the above inequalities imply that |1/6;]| and |§;| have upper bounds independent of <.
Consequently, there exists a constant §, > 0 so that

b 0;) =0,>0 (i=0,1,2,...); (4-29,)
i.e. condition (4-29) is satisfied. Hence, lemma 4-2 is valid in this case.

+ This method was investigated for the unbounded operators by Samokish [33] for the case when
K = § = I and T-! and C-! are compact selfadjoint operators.
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REMARK 10. Let us observe that, under the present very general conditions on C and the
arbitrariness of «,, the investigation of the graph of p(u, t) and especially of the Cases 37 and
37 show not only that §; can be positive and negative but also that they can be arbitrarily
large since the denominator in the expression y” can be arbitrarily small. Consequently,
without further conditions on either the choice of C or the initial element «, or on both we
cannot expect the condition (4-34) to be satisfied. We shall return to this problem at some
later time.

(v) Accelerated method of steepest descent. If t; =ad,, then we obtain the accelerated method

of steepest descent .
p u'+l :uz""aazhl (Z=0,],2,...). (4'85)

1

Using the fact that §,4;s,0? = s5;4,0, = ¢;0,— 1, it is easy to see that

_ oa?i (lﬁbiﬁi) (2_ai5ia0i)
p(u,0b;) = 1—5,0, (1—2b;ab,+¢,a°0?)

0.
= lﬁbl.ﬁ_.[l+(1_a)g(ui’0iaa)]a (4-61)

—92b.6. .52
where g(u, 0, 0) = 1—2b,0,+aq;s;

= 1—2b,af, + a2, 0? (1=0,1,2,...). (4-62)

Formulas (4-61) and (4-62) suggest that we take « in the range: 0 < a < 1. Furthermore, in
order for g to be positive, « must also satisfy the condition

c; 07

<a<l. (4-63)

Since 1 > (2b,0,—1)/¢;6? and (2b,0,—1)/c;0? > 0 for §; < 0 we must conclude from this and
(4-63) that we cannot take « so that 0 < « < 1. Thus, we have the justification of the sug-
gestion derived experimentally [37] that we take a so that 0 < « < 1. As a matter of fact, we
should take a so that 0 <€ & < 1 if 1 —24,0,+ac;6? > 0 and « = 1, otherwise.

If these conditions are satisfied, then from (4-61) and (4-29,) we get

Pl o) >ad, >0 (i=0,1,2,..).

Special case. An important special case is obtained when C = S, i.e. when b = 0. In this
case p(u;, ab;) = ab[1+ (1—a) (14ag67)/(1+a2;;0?)] > ab; for 2 in 0 < « < 1. The formof p
suggests that in this case we also take « to be near 1.

(vi) Amodified method of steepest descent. We have seen in (iv) that without further conditions
on C and u, the choice ¢ = §; will not satisfy the inequality (4-34). However, the following
modification of procedure (4:8,)1, called here a modified method of steepest descent, will be
shown to satisfy all our conditions.

Let us determine a sequence 7; = ¢(%;) as follows: Choose an arbitrary fixed constant
d¢ > 0 and define ¢; by ) {Hi’ if0 <0, <4,

86, if no such root exists. (4-64)

T Incase K = I and other operators are finite symmetric and positive matrices the method was proposed
by Hestenes & Karush [11].
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This sequence is simple to construct since it involves only the solution of (4-19) and a com-
parison of numbers. It follows from our construction of #; and the discussion in (iv) that
there exists a constant d; > 0 such that

5, <1 <8; (i=0,1,2,..).

Thus, conditions (4-34) and (4-40) are fulfilled. Furthermore, the graphs of p(u,¢) and

(4-64) show that p(u, t) is an increasing function on the interval 0 < ¢ < ¢(y;). Consequently,

we can select a number §; > 0 so that §; < 05 and &€ (0, 2M!) and for which, in virtue of

(4-28) and (4-57), we have

:5,05) 85(2— 5Ml h

, 1 R A\ S A T - > A . > O

Thus, we sce that in this case conditions (4:29) and (4:34) and even (4-40) are satisfied.
We shall end this chapter by observing that the form (4-15) of p(u,t) suggests another

choice of £, namely, ¢, = 1/|a;s,|, so that (4-8) reduces in this case to

Ui :ui—hi/laisi| (t=0,1,2,...). (4-8¢)

1

It is easy to sce that when |/;|,/|%|, is small, as will be the case when , is near the solution,
then the choice £; = 1/]g;5] is a good estimate of the optimum value of 6;. It can be shown
that when we choose the operators K and C appropriately and assume that #, is so chosen
that for some ¢ we have A < A,, then the sequence {1/|q;5;|} satisfies conditions (4:29), (4-34),
and (4-40). The discussion of the last statement as well as the investigation of the closely
connected problem indicated in Remark 10 will be taken up at some later time.

4-6. Applications to ordinary differential eigenvalue problems

In this section we illustrate the applicability and the numerical effectiveness of the
iterative method (4-8) to (4:10) by calculating the smallest eigenvalue A; by means of
the method with relative minimal norms (4-8,) and its acceleration (4+8,) for two ordinary differential
eigenvalue problems arising in the problems of elastic stability.

Observe first that, by lemma 4-2 (a) and theorem 4-1, if the initial approximation u, in
D(T) is so chosen that A < A, for some 7 (i = 0,1,2,...), then A*>; monotonically. Thus,
to calculate A, approx1mately we need to know a lower estimate £, for A,. The latter will be
obtained from the following comparison theorem assuming, of course, that the cigenvalues of
the comparison problem are easily obtainable.

THEOREM 4-4 (a). Cousider a pair of eigenvalue problems

Tu—ASu =0, Tu—2A*S*u=0, (4-65)
where T is K-p.d. and the operators S and S* satisfy the inequality
($*u, Ku) = (Su, Ku) > 0 for allwin D(T). (4-66)

Then the ergenvalues A; and XF of the respective problems (4+65) are such that 1} < A, for i = 1,2,3,.
(b) Suppose t/zat T and T+ are K-p.d. with D(T) = D(T"),

(T"u, Ku) < (Tu, Ku) for all uin D(T), (4-67)
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and § is K-positive on D(T'). Then the eigenvalues A; and A of the corresponding problems
Tu—ASu=0, Tru—ASu=0 (4-68)

are such that At < A, (1 =1,2,8,...).

Proof. The proof of theorem 4-4 follows immediately from Courant’s [5] maximum-
minimum principle which, in virtue of theorem 2-2 and 2-3, can be proved in exactly the
same way as it was done in [4].

(A) Selfadjoint ergenvalue problem. As a first example from the theory of elastic stablllty we
consider the question of determining the critical load in the buckling problem for a column,
with variable moment of inertia, which is simply supported at the top and clamped at the
bottom. After a simple transformation of axis this question (see [42,43]) leads to the
problem of determining the smallest eigenvalue A, of the 4th order ordinary differential
eigenvalue problem:

(Dx)y")"+4y" =0, y(0) =y(1) =y'(0) =y"(1) =0, (4-69)

where we assume that D(x) e C2(0,1), 0 <m < D(x) < M on [0,1] and m < 1
Let L,(0-1) be the real Hilbert space of square-summable functions z(x) defined on [0, 1]
with the inner product and norm given by

1) = [uotds, = [weds (woeLy(o,1).

To apply our iterative method with relative minimal norms put
Ty=(Dx)y")", Cy=y*, Sy=—y" and Ky=y for yeD(T) (470)

where D(T) = D(C) is the set of all functions y(x) in C*(0, 1) satisfying the boundary condi-
tions (4:69). It is easy to verify that 7', C, and § thus defined are symmetric. Furthermore,
since for eachj = 0,1, 2, ...
|+ D)2 > 2|ju)||?  for every u in Ci+1(0, 1) with u)(0) =0 (471)

and m < D(x) < M, it follows that T, C and § are also positive definite and that the
inequalities (4+3) and (4-36) hold with M, = m, M; = M and [, = 2. Thus, theorem 4-1 is
applicable to the eigenvalue problem (4-69) with ¢ = ¢. For the application of the com-
parison theorem 4-4 consider the eigenvalue problem

Cy—A+Sy =0, ie. {y®+A1%y"=0,y(0)=y(1) =y'(0) =y"(1) =0} (472)
Since, as is easily seen, for 1* == 0 with A* = £? the eigenvalues A* of (4:72) are determined
from the equation tan k = £, it follows [4] that 4] ~ 2019644 and A ~ 59:68026. In virtue
of the inequality (4-3) satisfied by 7" and C, theorem 4-4 (b) implies that

ky = mlf = m59-68026 < A,

According to the iterative method with relative minimal norms the basic iteration formula for
the approximate calculation of the eigenvalues of (4:69) is given by

. T', i . fo
Ai= % (i=1/28,...), (4-73)

57 Vor. 262. A.
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where y, is a given initial approximation in D(7") and
Y=Yk, (=1,23,..), (4:74)

where, for each i, &,_, is the solution of the boundary-value problem
C o [HR = (D@)Y) ATy
1414(0) = 411 (1) = 4i-2(0) = 41 (1) = 0

(Ol
U (Tl by )

If y, is so chosen that 20 < k,, then by theorem 4-1 the sequence {1’} constructed by (4:73) to
(4-76) converges monotonically to 4;.

Chyy = Tgyr— N1y, }(Mm

(i=1,2,3,...) (4-76)

Particular example (i). For the numerical calculations, as a special case of (4+69), consider
the eigenvalue problem

(1—052%)y")"+dy" = 0, y(0) =y(1) =y'(0) =y"(1) = 0. (477)
In this case D(x) = 1—0-5x2, Ty = ((1—0-5x%)y")",m = 0-5, M = 1 and k, = 29-84012<A,.
If yo(x) = 3x2—5x3+2x%, then y,e D(T') and A° = 18-25 < k,. Hence the sequence {A} con-

structed for (4-77) by (4:78) to (4-76) converges monotonically to A,. The first six approxi-
mations to A; were computed on Maniac III and, when rounded to six decimal places, are

given by Al = 16727846, A% =16-558719, A3 = 16-535116,
M = 16-532073, A5=16-531726 and A6 = 16-531691.

To apply the accelerated method with relative minimal norms (4-8;) to (4-77) we first
note that (4-29) and (4-34) are satisfied for any parameter  in

0<a<2. (4-78)

The approximations A% to A, are also computed by the method (4:73) to (4:76) except that,
in accordance with (4-8,), y;in (4-74) are given by

Y=ty —at b, (1=1,2,3,...). (479)

The calculations were carried out for « = 0-50, @ = 075, ¢ = 1-00, ¢ = 1-25, « = 1-50 and
a = 1-75 with ¢ = 1-00 giving, of course, the original method (4-:74). The obtained results
are shown in table 1. ,
TaBLE 1
a Al A2 A3 A A8 A7

0-50 17-234877 16-838594 16-:670429 16-595594 16-561380 16-545512

0-75 16-921443 16-635284 16-560261 16-539510 16-533778 16-532210

1-00 16-727846 16-558719 16-535116 16-532073 16-531726 16-531691

1-25 16-645627 16-540947 16-532651 16:531793 16-531699 16-531688

1-50 16-665706 16-553612 16535253 16:532335 16-5631810 16-5631712
175 16-778675 16-609669 16-560058 16-543194 16-5636655 16-533924

The above table shows that for the problem (4-77) the best approximations A% to A, are
obtained for the accelerated parameter a = 1:25.

(B) Non-selfadjoint eigenvalue problem. As another application we consider the question of
determining the critical load in the stability problem of a compressed bridge belt and in the
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problem of buckling of a bar under distributed axial load. As is known [43] in both of the
above problems, our question leads to the problem of determining the smallest eigenvalue
of the problem of the form

—y"—p(x)y" =0, y(0) =y'(0) =y"(1) =0, (4-80)
where we assume that p(x) is a polynomial in x such that 0 < p(x) < 1 on [0, 1]. In this case
we define the operators 7, S, K and C by

Ty=Cy=—y", Sy=px)y and Ky=y (4-81)

with T and C having the domain D(T) = D(C) comprising the set of all y in C3(0,1)
satisfying the boundary conditions (4-80) while the operators § and K are defined, for
example, for all y in C1(0, 1) satisfying the condition y(0) = 0.

Using the same arguments as in [40] it can be shown that 7" (and C) is K-symmetric and
K-p.d.,i.e. K is closeable, KD(T) is dense in L,(0, 1), and

(Tu, Ko) = — f "y Ay = — f "o dx = (Ku, To)  (u,0e D(TY), (4-82)
0 0

1
(Tu, K) = [ ()2de > 2wl = 2Kalf, (Tu,Ka) > 4l (we D(T)).  (433)
0
Furthermore, Sis clearly K-symmetric and (Sy, Ky) > 0 for y = 0 in D(S) for, if

(81, K9) = [ p) ()2dx = o,

then y'(x) = 0 on [0, 1], y(x) = const. and y(x) = 0 since y(0) = 0. Note that (4:3) holds
with M, = M, = 1 while, in virtue of (4-71), (4-83) and the equality p,, = max p(x), (4:36)

0<x<1
holds with I, = 2/p,,. Thus, theorem 4-1 or rather (since T = C) theorem 42 is applicable
to the eigenvalue problem (4-80) with ¢; = ¢; = 1 for each .
To get the lower estimate £, for A, of (4:80) we use the comparison problem
—y" =%y =0, y(0)=y'(0) =y"(1) =0, (4-84)
whose eigenvalues are known to be A¥ = (2i—1)247 172 for ; = 1,2, 3, .... Because $*y =y’
and 0 < p(x) < 1, (Sy, Ky) < (S*y, Ky) for y in D(T). Hence, theorem 4-4 (a) implies that
¥ < A, where A, are the eigenvalues of (4-80). It follows therefore that

k, = 22-20661 ~ 9-4-172 = A} < A,
The method with relative minimal norms (4-8,) when applied to (4:80) with C' =T

reduces to the method v (Ty,, Ky) o L2.) (85)
(8%: Ky;) S
where y, is a given function in D(7") and, since #; = 1 for each ¢,
Yi=Y1—h, (1=1,23,..), (4-86)

where, for each i, &;_, is the solution of the boundary-value problem

[Bl1 = g+ AP (%) iy 1

‘Ulial(()) = h_1(0) = A_ (1) = 0' (t=1,...). (4-87)

Thi—l = Ty, —X7'8y;-y, 1e.

57-2
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Ify, is so chosen that A° < £,, then by theorem 4-2 the sequences {A’} and {y,} constructed by
(4-85) to (4-87) are such that {A’} converges monotonically to A, and {y;} converges in the
H,-metric to an eigenvector of (4:80) belonging to A,. Here Hj is the completion of D(7) in
the metric

1 1
[, 0] = (T, Kv) = f o' dx,  |uf? = f (u")2 dx. (4-88)
0 0
Particular example (i1). For the numerical calculation, as an example of (4-80), consider
the problem of determining approximately the critical load in the stability problem of a
compressed bridge belt. This reduces to finding the smallest eigenvalue A, of

Y —A(1=2)y = 0 y(0) —y'(0) = y"(1) = . (4-89)
In this case p(x) = 1 —x2 and Sy = (1 —2)y’ with p(x) and § clearly satisfying our condition
on [0,1]. If y, = — 6424243, then y,e D(T") and A° = 5-185185 < £,. Hence, our assertions
of the preceding paragraph apply. The first six approximations to A;, when rounded to six
decimal places, are given by

Al =5-121985, A2 =5-121673, A3 = 5-121669,
A* = 5-121669, A5 =121669 and A% = 5-121669.

To apply the accelerated method (4-8;) to (4:89) note that by (4-58) the parameter «
must lie in the open interval (0, 2). As before we compute Ai by (4:85) to (4-87) except that
y; in (4-86) are given by y; = y;_, —ahk,_,. The obtained results for various values of « are
shown in table 2.

TABLE 2
o Al A2 A3 At AP A
0-50 5-139284 5126621 5123073 5122070 5121784 5121703
075 5-127121 5-122167 5121717 5-121674 5-121670 5121669
1-00 5-121985 5121673 5121669 5121669 5-121669 5121669
1-25 5-123752 5121756 5121673 5-121670 5-121669 5121669

1-50 5-132295 5123643 5-122055 5-121747 5-121685 5-121673
1.75 5-147486 5-132911 5-126771 5124049 5-122802 5-122216

The above numerical results show that with C = T the original method (4-8,) seems
to be best.

Finally let us observe that the numerical results obtained for (4-77) and (4:80) by the
method with relative minimal norms and its acceleration compare very favourably with
similar numerical results obtained by the method of Schwarz constants, variational method
of Ritz, Galerkin method, finite difference method, and others (see, for example, [43]).
The additional advantage of our method is that it converges monotonically and that at
each step of the process we are solving a boundary-value problem of the form Cy = f,
where fis given and C'is a simple operator, say, with constant coefficients in case of differ-
ential eigenvalue problems. Furthermore, in many cases the programming of the problem
on an electronic computer is quite simple.

The author is greatly indebted to E.Isaacson and P.D.Lax for their interest and
suggestions offered in the course of preparation of this paper. Thanks are also due to
C. De Prima for numerous stimulating discussions concerning some topics of this paper.
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